COMPREHENSIVE META-ANALYSIS OF ENDOVASCULAR VERSUS BYPASS FOR CRITICAL LIMB ISCHEMIA: IS BYPASS OBSOLETE?

Dr. Konstantinos Katsanos, MSc, MD, PhD, EBIR
Asst. Prof. Interventional Radiology
School of Medicine, Patras University Hospital, GR
Honorary Consultant Interventional Radiologist
Guy's and St. Thomas' Hospitals, London, UK
Conflicts of interest

- Nothing to disclose
Treatment synergies

Anatomical factors (stenoses, run-off, vein, etc)

Clinical factors (comorbidities, age, etc)

Bypass Angioplasty
Arguments

<table>
<thead>
<tr>
<th>Crural Angioplasty</th>
<th>Femorodistal bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comorbidities eligible</td>
<td>Eligibility varies</td>
</tr>
<tr>
<td>Variable access options</td>
<td>Standard anatomical approach</td>
</tr>
<tr>
<td>Native vessels recanalization</td>
<td>Vein conduit necessary</td>
</tr>
<tr>
<td>Low complication rate</td>
<td>High complication rate</td>
</tr>
<tr>
<td>Demanding interventional skillset</td>
<td>Demanding surgical skillset</td>
</tr>
<tr>
<td>May be repeated multiple times</td>
<td>Revision very difficult</td>
</tr>
<tr>
<td>Maintains bypass options</td>
<td>Burns angioplasty options</td>
</tr>
<tr>
<td>2-3 vessels recanalization</td>
<td>Single line of flow to the foot</td>
</tr>
</tbody>
</table>
Infrapopliteal angioplasty

Primary patency

Limb salvage

Bypass 66-76%

Bypass 82-84%
Infrapopliteal angioplasty vs distal bypass

279 limbs in 243 patients → 125 propensity matched limb pairs

Complications: 21·6% versus 36·0% in surgical bypass; P=0·041
Hospital stay: 5 versus 18 days in surgical bypass; P=0·001

Endovascular-first or bypass-first for CLI?

Recommendation 35. Choosing between techniques with equivalent short- and long-term clinical outcomes

In a situation where endovascular revascularization and open repair/bypass of a specific lesion causing symptoms of PAD are associated with equivalent short- and long-term symptomatic improvement, endovascular techniques should be used first [B]
In-hospital mortality (1,797,885 cases)

Claudication

Bypass versus Endo

US, Nationwide Inpatient Sample, 1,797,885 patients

In-hospital mortality (1,797,885 cases)

Women versus men; \(p < 0.01 \)

- 0.5% vs 0.2% after angioplasty or stenting for intermittent claudication
- 1.0% vs 0.7% after open surgery for intermittent claudication
- 2.3% vs 1.6% after angioplasty or stenting for CLI
- 2.7% vs 2.2% after open surgery for CLI

US, Nationwide Inpatient Sample, \(1,797,885 \) patients
Medicare propensity matched 5,928 endo vs 5,928 bypass

30-day outcomes

Reduced mortality with ENDO

<table>
<thead>
<tr>
<th>Patients</th>
<th>Endo (n = 5928)</th>
<th>Open (n = 5928)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation or mort.</td>
<td>7.4</td>
<td>8.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Amputation</td>
<td>2.5</td>
<td>2.7</td>
<td>0.416</td>
</tr>
<tr>
<td>Mortality</td>
<td>5.3</td>
<td>6.7</td>
<td>0.001</td>
</tr>
<tr>
<td>Patients with claudication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation or mort.</td>
<td>1.8</td>
<td>2.5</td>
<td>0.215</td>
</tr>
<tr>
<td>Amputation</td>
<td>0.1</td>
<td>0.3</td>
<td>0.239</td>
</tr>
<tr>
<td>Mortality</td>
<td>1.7</td>
<td>2.2</td>
<td>0.366</td>
</tr>
<tr>
<td>Patients with CLI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation or mort.</td>
<td>9.3</td>
<td>11.2</td>
<td>0.005</td>
</tr>
<tr>
<td>Amputation</td>
<td>3.3</td>
<td>3.5</td>
<td>0.580</td>
</tr>
<tr>
<td>Mortality</td>
<td>6.5</td>
<td>8.3</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Medicare propensity matched
5,928 endo vs 5,928 bypass

Amp-free survival

Overall survival

HR = 0.84 (0.79-0.89)

Meta-analysis methods

- PubMed (MEDLINE), EMBASE, AMED, and Scopus searched with the PRISMA process
- Frequentist Meta-analysis of Endovascular versus Surgical Bypass for Severe/Critical Limb ischemia
- Random effects model – LOG HAZARD SCALE (time-to-event analyses)

Katsanos K, Work in progress
Limb salvage

30 studies - 29688 cases

14523 endovascular versus 15165 surgical bypass

(1 randomized, 5 propensity matched, 4 multivariable adjusted, 20 unadjusted cohorts)

HR (95%CI): 0.74 (0.62-0.87)
HR (95%CI): 1.05 (0.94-1.17)
Conclusions

- ENDO first approach in all patients
- Early benefit of reduced mortality
- Late benefit of improved limb salvage
- No difference in overall patient survival
- Randomized studies pending?
Thank You
Amputation Free Survival

Summary meta-analysis plot [random effects]

- Arvela 2010: 0.73 (0.49, 1.11)
- Zdanowski 1997: 0.99 (0.88, 1.11)
- Faglia 2006: 0.84 (0.59, 1.20)
- Kudo 2006: 0.90 (0.61, 1.34)
- Dosluoglu 2008: 1.07 (0.54, 2.13)
- Chong 2009: 1.36 (1.06, 1.76)
- Dorigo 2009: 1.63 (0.70, 3.79)
- Casella 2010: 0.95 (0.46, 1.96)
- Bradbury 2010: 1.02 (0.81, 1.29)
- Soderstrom 2010: 0.89 (0.68, 1.14)
- Varela 2010: 1.05 (0.39, 2.86)
- Faglia 2011: 0.48 (0.25, 0.92)
- Korhonen 2011: 1.14 (0.87, 1.50)
- Chan 2014: 0.59 (0.35, 1.01)
- Soga 2014: 0.88 (0.63, 1.23)
- Katib 2015: 0.95 (0.64, 1.41)
- CRITSCH 2016: 0.91 (0.70, 1.19)
- Patel 2016: 1.54 (0.94, 2.51)
- Darling 2017: 1.09 (0.94, 1.28)
- Dick 2017: 1.25 (0.83, 1.88)
- Hicks 2017: 0.96 (0.76, 1.22)
- Wiseman 2017: 0.84 (0.80, 0.89)

(combined: 0.97 (0.89, 1.06))