Two-Year Evaluation of Fenestrated and Parallel Branch Endografts for the Treatment of Juxtrarenal, Suprarenal and Thoracoabdominal Aneurysms at a Single Institution

LINC 2018

James F. McKinsey, M.D.
The Mount Sinai Professor of Vascular Surgery and Vice Chairman Systems Chief of Complex Aortic Intervention for Mount Sinai Health Care System
Surgical Director of the Jacobson Aortic Center Mount Sinai Medical System Department of Surgery Mount Sinai
Disclosure

WL Gore – Consultant
Bolton Medical – SAB
Cook IDE for Fenestrated and Branch Grafts – no Financial benefit
Spectranetics – SAB
Abbott Medical – Speakers Panel
Introduction

• Endovascular management of juxtarenal (JRA), suprarenal (SRA), and thoracoabominal aortic aneurysms (TAAA) remains challenging especially in acute cases

• Fenestrated endovascular aortic aneurysm repair (fEVAR) has gained popularity to treat JRA.

• Zenith fenestrated AAA endovascular graft (Cook Medical, Bloomington, Ind) is now commercially available in the US. P-Branch OTS(Off the Shelf) undergoing clinical trials.
Introduction

• Other investigational thoracic branched endografts to treat SRA and TAAA are limited to physician-sponsored Investigational Device Exemption and custom manufacturing times

• Thus, other endovascular techniques such as parallel branch endografts (pEVAR) have been utilized

• Various configurations reported: snorkel, chimney, periscopes, sandwich, etc.

• The endograft patency, gutter endoleak and re-intervention rates remain a concern
Objectives

• To assess the outcome of fEVAR and pEVAR in endovascular management of JRA, SRA, and TAAA at a single institution

• To evaluate mortality, morbidity, graft patency and re-intervention rates for fEVAR and pEVAR for the repair of complex aortic aneurysms
Methods

• This is a retrospective review of prospectively collected database

• Inclusion criteria:
 – All consecutive patients with JRA, SRA, or TAAA who underwent endovascular repair from August 2014 to March 2017 at our institution

• Exclusion criteria:
 – Aortic rupture
Methods II

- Type of repair was a single surgeon decision based on anatomy and urgency of repair

- Patient demographics, hospital course, and follow up visits were analyzed

- Outcome measures analyzed:
 - Perioperative mortality
 - Graft patency
 - Re-intervention rates
 - Survival
Fenestrated Endograft Technique

- Hybrid Suit, Siemens Artis Zeego
- Standard Cook Zfen Endograft
- Local or General Anesthesia
- Percutaneous femoral access
- Renal artery balloon expandable endografts (iCast, VBX)
- Selective SMA self expanding bare metal stent
Parallel Endograft Technique

- **Parallel Endografts**
 - Visceral and renal antegrade access via subcalvian/axillary cut-down
 - 20-30% over sizing
 - Self expanding (Viabahn) or balloon expandable (iCast, VBX) endografts
 - Snorkel-Sandwich technique if more than 2 parallel grafts needed
 - Long stent graft configuration to increase opposition
 - Staged procedure if long coverage needed with spinal drain
117 complex endovascular aortic repairs were performed
100% technical success rate

Demographics

- pEVAR
 - 38 patients
 - celiac: 21
 - SMA: 28
 - renal: 58

- fEVAR
 - 32 patients
 - celiac: 2
 - SMA: 30
 - renal: 62
Demographics

<table>
<thead>
<tr>
<th>Groups</th>
<th>fEVAR</th>
<th>pEVAR</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td>75.1 ± 8</td>
<td>76.5 ± 12</td>
<td>0.5</td>
</tr>
<tr>
<td>Female (%)</td>
<td>28%</td>
<td>39.5%</td>
<td>0.4</td>
</tr>
<tr>
<td>Aortic size (cm)</td>
<td>6.44</td>
<td>6.36</td>
<td>0.9</td>
</tr>
</tbody>
</table>

No difference between two groups
Comorbidities
Freedom from Aortic Mortality

Median follow-up was 12 months (1 – 32 month range).
Overall Survival

78%

P=0.7
Endograft Thrombosis

P = 0.5

fEVAR: 3.2% (3/94)
pEVAR: 1.8% (2/109)
Reinterventions

- **fEVAR group**
 - 2 renal stent occlusions
 - 1 colonic ischemia
 - 1 iliac limb occlusion
 - 1 perinephric hematoma

- **pEVAR endografts**
 - 3 endoleaks
 - 2 renal thrombosis
 - 1 celiac thrombosis
 - 1 renal stent kink
 - 1 gutter leak embolization
Reintervention Free Survival

- 74% fEVAR
- 58% pEVAR
- P=0.6
Univariate Analysis of Reintervention

<table>
<thead>
<tr>
<th>Groups</th>
<th>Odd Ratio (OR)</th>
<th>95% Confidence interval (CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Endograft</td>
<td>0.7</td>
<td>0.2 - 2.3</td>
<td>0.56</td>
</tr>
<tr>
<td>Age</td>
<td>1.03</td>
<td>0.2 - 1.6</td>
<td>0.35</td>
</tr>
<tr>
<td>Male</td>
<td>0.8</td>
<td>0.2 - 2.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Aortic size</td>
<td>1.005</td>
<td>0.8 - 1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Number of endografts</td>
<td>1.11</td>
<td>0.7 - 1.8</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Perioperative Complications

fEVAR

- 1 bowel ischemia
- 1 ischemic LLE (CFA endarterectomy)
- 1 iliac limb occlusion
- 1 perinephric hematoma,

pEVAR

- 1 bowel ischemia
- 1 wound infection
- 1 brachial hematoma
- 1 MI
- 1 transient paralysis

p < 0.05
Conclusions

• pEVAR and fEVAR have acceptable perioperative mortality in treating JRA, SRA, TAAA

• Parallel branch endografts have acceptable patency rates with low rates of reinterventions

• Snorkel-sandwich technique appears a viable option if 4 vessel off-the-shelf reconstruction is needed

• Staged procedure is critical when long segment of aorta is treated such as type II/III TAAA
Thank you

• Acknowledgement:
 Ryan Ralat, P.A.
 Department of Surgery, Division of Vascular Surgery
 Mount Sinai Hospital
Two-Year Evaluation of Fenestrated and Parallel Branch Endografts for the Treatment of Juxtrarenal, Suprarenal and Thoracoabdominal Aneurysms at a Single Institution

LINC 2018

James F. McKinsey, M.D.
The Mount Sinai Professor of Vascular Surgery and Vice Chairman
Systems Chief of Complex Aortic Intervention for Mount Sinai Health Care System
Surgical Director of the Jacobson Aortic Center Mount Sinai Medical System Department of Surgery Mount Sinai