36-month Results from the Absorb BTK Study

Ramon L. Varcoe MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Prince of Wales Hospital
Sydney, Australia
Disclosure
Speaker name: Ramon L. Varcoe

- I have the following potential conflicts of interest to report:
 - Receipt of grants/research support
 Details: Abbott Vascular
 - Receipt of honoraria and travel support
 Details: Abbott Vascular, Medtronic, Boston Scientific
 - Employment in industry
 Details:
 - Shareholder in a healthcare company
 Details:
 - Owner of a healthcare company
 Details:
 - I do not have any potential conflicts of interest to report
ADVANTAGES OF STENTING

• TO IMPROVE PATENCY
• MECHANICAL SUPPORT
 • Scaffolding
 • Elastic Recoil
 • Flow Limiting Dissection
ADVANTAGES OF STENTING

• TO IMPROVE PATENCY
• MECHANICAL SUPPORT
 • Scaffolding
 • Elastic Recoil
 • Flow Limiting Dissection
• DRUG DELIVERY
DISADVANTAGES OF STENTING

• VESSEL WALL EFFECTS
 • Vasomotion
 • Autoregulation
 • Adaptive Remodelling

• LATE FAILURE
 • Incomplete endothelialisation
 • Fracture
 • Malapposition

• IMPEDIMENT TO FUTURE REVASCULARISATION
A BVS MAY BE THE BEST OF BOTH WORLDS?

- Mechanical Scaffolding
- Drug Delivery
- Potential Return of Normal Vessel Wall Function
- Then Disappears!
• Poly-L-Lactic Acid structure
• Poly-D,L-Lactic Acid polymer
• Everolimus (100µg/cm²)
• 80% (±10%) elutes 28d
• Multilink design
• Circumferential hoops
• Straight connection bridges
• Radio-opaque platinum markers
• 150 µm strut thickness
STUDY DESIGN

• Prospective, Non-Randomised, Single-Center Study

Inclusion Criteria

• Chronic lower limb ischemia: RC 3-6
• Life expectancy >1yr
• Single or Multiple De novo lesions; >60%
• Infrapopliteal arteries (distal P3)
• Total Lesion Length ≤5cm (Max 2xBVS)
• Diameters 2.5-4.0mm
ENDPOINTS

<table>
<thead>
<tr>
<th>MEDICATION CHECK</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
<th>▶️</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL EXAMINATION</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>RUTHERFORD CLASS</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>Ankle Brachial Index</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
<tr>
<td>DUPLEX ULTRASOUND (PSVR<2.0)</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
<td>◆</td>
</tr>
</tbody>
</table>

ENDPOINTS

- Binary Restenosis
- Primary Patency

- CD-TLR
- CD-TVR
• 48 Patients
 • Male:Female 56:44%
 • Mean Age 82yrs (range 65-97yrs)

• 55 Limbs
 • Left:Right 45:55%
 • CLI:IC 73:27%
• **71 Scaffolds Implanted**
 – Target vessels treated
 • ATA 15
 • PTA 9
 • PA 15
 • TPT 29
 • P3 2

• Mean lesion length **20.1 ±10.8mm** (5-50mm)
• 100% Procedural & Technical success
• 11 deaths (23% of cohort) (All Outside 30d)

Mean Follow-Up 24 months
Sustained Clinical Improvement 93%
Primary patency 63/71 (88.8%)
Assisted primary/secondary patency 100%
Limb salvage 100%
Sustained Clinical Improvement in 93%

Change in Rutherford Category

-5

THE VASCULAR INSTITUTE
PRINCE OF WALES
RESULTS

- 100% Procedural & Technical success
- 11 deaths (23% of cohort) (All Outside 30d)

Mean Follow-Up
- 24 months

Sustained Clinical Improvement
- 93%

Primary patency
- 63/71 (88.8%)

Assisted primary/secondary patency
- 100%

Limb salvage
- 100%
PRIMARY PATENCY 92.2%

CD-TLR 97.2%
CD-TLR 97.2% CD-TLR 97.2%

PRIMARY PATENCY 92.2% PRIMARY PATENCY 90.3%

CD-TLR (%)	100	97.2	97.2	87.3
SE (%)	0	2.0	2.0	5.7
Primary Patency (%)	100	92.2	90.3	81.1
SE (%)	0	3.4	3.8	6.1
Table 6. Patency Per Lesion at 3 Year Follow up (Duplex)

<table>
<thead>
<tr>
<th>Modified Intention to Treat Analysis</th>
<th>PTA BMS</th>
<th>DES</th>
<th>p Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions with preserved patency</td>
<td>8 (20.5)</td>
<td>20 (37.7)</td>
<td>0.036</td>
</tr>
<tr>
<td>Ordinal score</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤50% stenotic</td>
<td>8 (20.5)</td>
<td>20 (37.7)</td>
<td></td>
</tr>
<tr>
<td>>50% stenotic</td>
<td>2 (5.1)</td>
<td>2 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Occluded</td>
<td>1 (2.6)</td>
<td>2 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Amputation/CI-related death/treatment in interim</td>
<td>28 (71.8)</td>
<td>29 (54.7)</td>
<td></td>
</tr>
</tbody>
</table>

3-Year Primary Patency
37.7%
BEFORE: JUNE 2014

AFTER A SINGLE BVS IN TPT JUNE 2014
AFTER: JULY 2017
37 MONTHS LATER
• Vascular restorative therapy with BVS offers several advantages over metal stents

• **Safety** using ABSORB BVS within the tibials has been demonstrated, *now at longer timepoints*

• Excellent 12 & 24-month **patency** has been maintained to “best-in-class” 36-month results
36-month Results from the Absorb BTK Study

Ramon L. Varcoe MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Prince of Wales Hospital
Sydney, Australia