A³ - Shield

A Translational Approach Towards Small Abdominal Aortic Aneurysm (AAA) Therapy

Uwe Raaz

Molecular and Translational Vascular Medicine
Heart Center Göttingen
Disclosure

I have the following potential conflicts of interest to report:

- [x] Consulting
- [] Employment in industry
- [] Stockholder of a healthcare company
- [x] Owner of a healthcare company
- [] Other(s)

- [] I do not have any potential conflict of interest
Current therapy: Large AAA exclusion

Prevent small AAA progression?
Wall stress as a trigger of early AAA growth?

Wall stress (?) → Wall stress (Laplace)
AAA induction – Elastase model
Segmental aortic stiffening precedes aneurysm formation.
Aortic stiffness gradients induce significant wall stress

Diastole

- Segmentally stiff aorta
- Homogeneous aorta

Systole

- Red arrows indicate direction of stress changes.
Aortic stiffness gradients induce significant wall stress
Aortic stiffness gradients induce significant wall stress
Segmental Aortic Stiffness (SAS)

- Segmental Aortic Stiffness (SAS) vs. Time after surgery (days)
 - PPE
 - Saline

- AA Diameter vs. baseline (%)
 - PPE
 - Saline
Can we reduce aortic stiffness gradients therapeutically to prevent AAA formation/progression?
Segmental Aortic Stiffness
Interventional stiffening of the AAA-adjacent aorta reduces wall stress
Interventional stiffening of the AAA-adjacent aorta stops AAA progression

![Graph showing AA Diameter vs. baseline (%) over time after surgery (days)].

- **Sham**
- **Glue**

The graph illustrates the progression of AAA diameter after surgery, comparing Sham and Glue interventions. The graph indicates that intervention with glue significantly slows the progression of AAA compared to the Sham group.
Interventional stiffening – Impact on AAA pathophysiology

Wall remodeling

Oxidative Stress

Inflammation

Apoptosis
Stiffness gradients develop in the aging human aorta
Translational concepts

Conventional approach

Exclude big AAA

+

Novel approach

Treat small AAA
Molecular and Translational Vascular Medicine

Göttingen
Isabel Schellinger
Joanne Jakubiczka-Smorag
Angelika Dannert
Giri Chodisetti
Karin Mattern
Anne Petzold
Kristina Kromer
Gerd Hasenfuß

Zwickau
Thomas Hertel

Leipzig
Fabian Emrich

Stockholm / Munich
Lars Maegdefessel

Stanford, CA
Alexander M. Zöllner
Ryuji Toh
Futoshi Nakagami
Joshua M. Spin
Ronald L. Dalman
Ellen Kuhl
Philip S. Tsao

Mainz
Moritz Brandt

Deutsche Forschungsgemeinschaft
National Institutes of Health