How can we improve treatment of long femoropopliteal lesions with DCB?

Dr. Marc Bosiers
LINC 2018, Leipzig
Conflict of interest

☐ have the following potential conflicts of interest to report:
 ☐ Consulting:
 ☐ Employment in industry
 ☐ Stockholder of a healthcare company
 ☐ Owner of a healthcare company
 ☐ Other(s)

✔ I do not have any potential conflict of interest
DCB-treatment works... Proof of concepts

DCB

POBA

- PASSEO 18 LUX
 - PTX 3\(\mu\)g/mm\(^2\) + BTHC
 - P=0.033

- PACOCATH
 - PTX 3\(\mu\)g/mm\(^2\)
 - P=0.031

- IN.PACT
 - PTX 3,5\(\mu\)g/m\(^2\)
 - P=0.001

- CVI
 - PTX Excipient?

- THUNDER
 - PTX 3\(\mu\)g/mm\(^2\)
 - P<0.001

- LEVANT
 - PTX 3\(\mu\)g/mm\(^2\) + polysorbate & sorbitol
 - P=0.016

- ADVANCE
 - PTX 3\(\mu\)g/mm\(^2\)
 - No excipient
 - P=0.12

Lesion Length (mm)

Late Lumen Loss (mm)

PASSEO 18 LUX

FEMPAC

PACIFIER

CVI

THUNDER

LEVANT

ADVANCE

PTX
1-Year Patency Rates of DCB (in ideal circumstances)

<table>
<thead>
<tr>
<th>Primary Patency (%)</th>
<th>89.50</th>
<th>89.00</th>
<th>87.50</th>
<th>85.40</th>
<th>N.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion Length (mm)</td>
<td>70</td>
<td>72</td>
<td>89.4</td>
<td>62.9</td>
<td>80.4</td>
</tr>
<tr>
<td>% Bail-out stenting</td>
<td>6</td>
<td>15.4</td>
<td>7.3</td>
<td>25.2</td>
<td>14.5</td>
</tr>
<tr>
<td>% CTO</td>
<td>9.4</td>
<td>19.2</td>
<td>25.8</td>
<td>31.2</td>
<td>22.1</td>
</tr>
<tr>
<td>% Severe Ca++</td>
<td>9.4</td>
<td>12.7</td>
<td>8.1</td>
<td>N.A.</td>
<td>11.7</td>
</tr>
</tbody>
</table>
However in “Real Life”

- LL > 10 cm
- CTO > 30%
- Severe Ca++ > 30%
REFLOW study

A study investigating the Efficacy of the LEGFLOW Paclitaxel-Eluting for the treatment of long femoropopliteal lesions (TASC C&D)
Legflow Drug Coated Balloon
Study design

- **Study Objective:**
 To evaluate the performance of the **LEGFLOW Paclitaxel-Eluting** Peripheral balloon catheter for the treatment of **long femoropopliteal lesions (TASC C&D)**.

- **Primary Endpoint:**
 Primary Patency at 12 months, defined as absence of a hemodynamically significant stenosis on duplex ultrasound (systolic velocity ratio ≤2.4) at the target lesion and without reintervention.
Participating centers

- **BELGIUM**
 - M. Bosiers, K. Deloose, J. Callaert - AZ Sint-Blasius, Dendermonde
 - P. Peeters, J. Verbist, W. Van den Eynde - Imelda Hospital, Bonheiden
 - L. Maene, R. Beelen - OLV, Aalst
 - K. Keirse - RZ Heilig Hart, Tienen
 - J. Hendriks, P. Lauwers – University Hospital Antwerp, Edegem

- **GERMANY**
 - G. Torsello – St. Franziskus-Hospital Münster
 - D. Scheinert – Universitätsklinikum Leipzig
Inclusion criteria

Main inclusion criteria

- Rutherford classification from 2 to 5
- *De novo lesion* in the femoropopliteal arteries, suitable for endovascular therapy
- Total target lesion length > 150mm

ReFlow

101 out of 120 patients enrolled (84%)
<table>
<thead>
<tr>
<th>Timeline</th>
<th>Baseline</th>
<th>disch</th>
<th>1 M</th>
<th>6 M</th>
<th>12 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutherford</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Lab Ultrasound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patient Demographics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%)</td>
<td>43 (66.15%)</td>
</tr>
<tr>
<td>Age (min – max)</td>
<td>70.01 (35.05 – 89.27) years</td>
</tr>
<tr>
<td>Nicotine abuse (%)</td>
<td>39 (60.00%)</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>49 (75.38%)</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>20 (30.77%)</td>
</tr>
<tr>
<td>Renal insufficiency (%)</td>
<td>9 (13.85%)</td>
</tr>
<tr>
<td>Hypercholesterolemia (%)</td>
<td>36 (55.38%)</td>
</tr>
<tr>
<td>Obesity (%)</td>
<td>13 (20.00%)</td>
</tr>
</tbody>
</table>

N = 65 out of 120

![Rutherford Classification Chart](chart.png)
Procedural characteristics

<table>
<thead>
<tr>
<th></th>
<th>N = 65 out of 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure time (min–max)</td>
<td>49.06 (20-115) minutes</td>
</tr>
<tr>
<td>Scopy time (min – max)</td>
<td>11.70 (3 – 38.50) minutes</td>
</tr>
<tr>
<td></td>
<td>*missing information for 1 patient</td>
</tr>
<tr>
<td>Contrast (min – max)</td>
<td>96.89 (25 – 195) mL</td>
</tr>
<tr>
<td>Cross-over performed (%)</td>
<td>37 (56.92%)</td>
</tr>
<tr>
<td>Inflow Lesion (%)</td>
<td>5 (7.69%)</td>
</tr>
<tr>
<td>Outflow lesion (%)</td>
<td>14 (21.54%)</td>
</tr>
</tbody>
</table>
Lesion Characteristics

<table>
<thead>
<tr>
<th></th>
<th>N = 65 out of 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion length (min – max)</td>
<td>218 (150 – 390) mm</td>
</tr>
<tr>
<td>Ref Vessel Diameter (min – max)</td>
<td>5.37 (4.5 – 6.0) mm</td>
</tr>
<tr>
<td>Pre-dilatation (%)</td>
<td>41 (63.08%)</td>
</tr>
<tr>
<td>1 DCB (%)</td>
<td>16 (24.62%)</td>
</tr>
<tr>
<td>2 DCB’s (%)</td>
<td>37 (56.92%)</td>
</tr>
<tr>
<td>3 DCB’s (%)</td>
<td>12 (18.46%)</td>
</tr>
<tr>
<td>Post-dilatation (%)</td>
<td>14 (21.54%)</td>
</tr>
<tr>
<td>Bail-out stenting (%)</td>
<td>13 (20.00%)</td>
</tr>
<tr>
<td>Occlusion (%)</td>
<td>25 (31.25%)</td>
</tr>
<tr>
<td>Calcified lesion (%)</td>
<td>43 (53.75%)</td>
</tr>
</tbody>
</table>
6-month Primary Patency – 65 pts

Primary Patency - 65 pts - 6MFU

Cumulative Primary Patency Rate (%)

84.10%
6-month Freedom from TLR – 65 pts

Freedom from Target Lesion Revascularization - 65 pts - 6MFU

Cumulative freedom from TLR Rate (%)

- Time (days)
 - 0
 - 30
 - 60
 - 90
 - 120
 - 150
 - 180
 - 210

- Number at risk
 - 65
 - 64
 - 61
 - 61
 - 61
 - 58
 - 55
 - 26

- 88.90%
6-month Rutherford evolution – 65 pts
Conclusion

• Preliminary results suggest that the LEGFLOW DCB is a valid and effective alternative to treat “real-life” long, complex and calcified femoropopliteal lesions.

• Awaiting for the final 12-month results.
How can we improve treatment of long femoropopliteal lesions with DCB?

Dr. Marc Bosiers
LINC 2018, Leipzig