The DEVASS study: Influence of patient selection on outcomes following EVAS with Nellix within the various IFU

Michel Reijnen
Rijnstate Arnhem
The Netherlands
Disclosure

Speaker name: Michel Reijnen

I have the following potential conflicts of interest to report:

✔ Consulting

☐ Employment in industry

☐ Stockholder of a healthcare company

☐ Owner of a healthcare company

✔ Other(s); Research funding

☐ I do not have any potential conflict of interest
Endovascular Aneurysm Sealing

- Commercially introduced in 2013 to reduce the incidence of re-intervention and late complications
- Multiple manuscripts have been published on the short-term outcome
- Maturation in indications for treatment, instructions for use, procedural practice and the device itself
- Complications including migration, AAA growth and proximal endoleak have been recognized
At one year:
- AAA-related mortality 1.3%
- Incidence of Endoleak 3.1%
- Incidence of migration 2.3%
- Reinterventions 3.7%

However; a higher incidence of late failures than anticipated was observed at 24 months:
1. Aneurysm growth
2. Migration

-> Refinements of the IFU based on statistical modeling

Anticipated results at 24 months:

- Freedom from AAA growth: 98.1%
- Freedom from Type Ia endoleak: 98.9%
- Freedom from migration: 97.5%

Keep in mind:

- Instructions for use is not only case selection; best practice!
- Second generation commercially available device has been introduced; distal endobag attachment
DEVASS study

Dutch Endovascular Aneurysm Sealing Study

- Retrospective observational cohort study
- 3 Dutch hospitals
 - IFU 2013: N=168
 - IFU 2016: N=48
- All imaging analyzed
- IRB approval
- Mean FU 23 months (12-29 months)
Results: baseline characteristics

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>IFU 2013 (%, SD)</th>
<th>IFU 2016 (%, SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>155 (92.3)</td>
<td>40 (83.3)</td>
<td>0.064</td>
</tr>
<tr>
<td>Female</td>
<td>13 (7.7)</td>
<td>8 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Age at procedure*</td>
<td>74 (68-79)</td>
<td>75 (68.25-79)</td>
<td>0.702</td>
</tr>
<tr>
<td>ASA class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>107 (63.7)</td>
<td>29 (60.4)</td>
<td>0.766</td>
</tr>
<tr>
<td>>2 missing</td>
<td>60 (35.7)</td>
<td>18 (37.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (0.6)</td>
<td>1 (2.1)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>112 (66.7)</td>
<td>33 (68.8)</td>
<td>0.786</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>126 (75.0)</td>
<td>38 (79.2)</td>
<td>0.552</td>
</tr>
<tr>
<td>Smoking, or history of smoking in last 10 years</td>
<td>78 (46.4)</td>
<td>20 (41.7)</td>
<td>0.559</td>
</tr>
<tr>
<td>Cardiac disease</td>
<td>72 (42.9)</td>
<td>27 (56.3)</td>
<td>0.117</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>47 (28.0)</td>
<td>13 (27.1)</td>
<td>0.903</td>
</tr>
<tr>
<td>Renal disease</td>
<td>34 (20.2)</td>
<td>8 (16.7)</td>
<td>0.581</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>27 (16.1)</td>
<td>11 (22.9)</td>
<td>0.272</td>
</tr>
</tbody>
</table>
Results; anatomical details

<table>
<thead>
<tr>
<th>Anatomical characteristics</th>
<th>IFU 2013</th>
<th>IFU 2016</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrarenal neck diameter</td>
<td>23.3 (21.8 – 25.5)</td>
<td>22.3 (20.9 – 24.3)</td>
<td>0.031</td>
</tr>
<tr>
<td>Infrarenal neck angle</td>
<td>21.9 (13.1 – 35.0)</td>
<td>25.2 (15.2 – 38.2)</td>
<td>0.234</td>
</tr>
<tr>
<td>Infrarenal neck length at</td>
<td>18.0 (12.0 – 31.0)</td>
<td>20.0 (15.0 – 30.8)</td>
<td>0.548</td>
</tr>
<tr>
<td>10% diameter increase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA lumen diameter</td>
<td>42.3 (37.9 – 48.1)</td>
<td>46.6 (41.3 – 50.8)</td>
<td>0.003</td>
</tr>
<tr>
<td>AAA outer diameter</td>
<td>57.9 (54.3 – 61.7)</td>
<td>56.4 (53.0 – 61.2)</td>
<td>0.141</td>
</tr>
<tr>
<td>Ratio AAA outer diameter to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAA lumen diameter</td>
<td>1.35 (1.19 – 1.57)</td>
<td>1.27 (1.15 – 1.32)</td>
<td>0.000</td>
</tr>
<tr>
<td>Infrarenal lumen volume</td>
<td>80.3 (64.1 – 107.3)</td>
<td>93.6 (73.7 – 110.8)</td>
<td>0.128</td>
</tr>
<tr>
<td>Right CIA lumen diameter</td>
<td>10.5 (9.3 – 12.0)</td>
<td>10.0 (9.2 – 11.0)</td>
<td>0.054</td>
</tr>
<tr>
<td>Right CIA outer diameter</td>
<td>18.0 (15.0 – 21.4)</td>
<td>16.5 (14.1 – 18.2)</td>
<td>0.002</td>
</tr>
<tr>
<td>Left CIA lumen diameter</td>
<td>10.5 (9.3 – 12.0)</td>
<td>10.2 (9.1 – 11.0)</td>
<td>0.133</td>
</tr>
<tr>
<td>Left CIA outer diameter</td>
<td>17.2 (14.8 – 20.4)</td>
<td>16.0 (14.1 – 18.1)</td>
<td>0.019</td>
</tr>
<tr>
<td>Procedure Details</td>
<td>IFU 2013</td>
<td>IFU 2016</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Procedural time</td>
<td>90 min (70-108)</td>
<td>90 min (74-106)</td>
<td></td>
</tr>
<tr>
<td>Technical success rate</td>
<td>98.2%</td>
<td>97.9%</td>
<td></td>
</tr>
<tr>
<td>Type Ia endoleak</td>
<td>n=3 (1.8%)</td>
<td>n=1 (2.1%)</td>
<td></td>
</tr>
<tr>
<td>Blood loss</td>
<td>130 mL (IQR 100-300)</td>
<td>150 mL (IQR 63-300)</td>
<td></td>
</tr>
<tr>
<td>Distal extensions</td>
<td>n=15 (8.3%)</td>
<td>n=7 (2.1%)</td>
<td></td>
</tr>
<tr>
<td>Scheduled</td>
<td>n=7 (4.2%)</td>
<td>n=0</td>
<td></td>
</tr>
<tr>
<td>Admission time</td>
<td>3 days (IQR 3-4)</td>
<td>3 days (IQR 3-4)</td>
<td></td>
</tr>
</tbody>
</table>
Results; 24 month outcome

- The freedom-from-reinterventions
 - IFU 2013: 94.4% (12 months), 89.7% (24 months)
 - IFU 2016: 95.7% (24 months)
- significantly more reinterventions in the first 45 cases ($p=.005$).

- The freedom from all endoleaks
 - IFU 2013: 97.4% (12 months), 92.7% (24 months)
 - IFU 2016: 97.8% (12 months), 90.1% (24 months)

- The freedom-from-migration
 - IFU 2013: 98.3% (12 months), 89.9% (24 months)
 - IFU 2016: 100% (24 months)

- Freedom from aneurysm growth
 - IFU 2013: 97.9% (12 months), 91.8% (24 months)
 - IFU 2016: 100% (24 months)

- Primary patency
 - IFU 2013: 96.4% (12 months), 94.0% (24 months)
 - IFU 2016: 100% (24 months)

- Overall survival
 - IFU 2013: 95.5% (12 months), 90.9% (24 months)
 - IFU 2016: 95.5% (24 months)
Results; AAA growth and insufficient distal seal
Occurrence of type Ia endoleak:

- < 1 year, N=4
- 1 year - 2 years, N=5

At two-year FU, 6 of 9 cases had received a reintervention:

- Conversions to open repair (n=4), one of them also had an aorto-enteral fistula
- Nellix-in-Nellix proximal extension (rAAA) (n=2)
- Embolization of the endoleak

Results; Type Ia endoleaks
2013 (n=9) 2016 (n=3)
Results; reinterventions
2013 (n=19) 2016 (n=4)

• **30 days (n=3, 1.8%)**
 – Fem-fem crossover (IFU 2016 cohort)
 – Thrombectomy with or without relining (n=2)

• **30 days - 1 year (n=6, 3.6%)**
 – Thrombectomy/thrombolysis with or without relining (n=4, 1x IFU 2016 cohort)
 – Relining for stenosis
 – Conversion for aorto-enteric fistula

• **1 year – 2 years (n=10, 5.9%)**
 – Relining for stenosis
 – Fem-fem crossover
 – Embolisation for Ia endoleak (IFU 2016 cohort)
 – NiNa for migration and Ia endoleak (N=2, 1x for rAAA)
 – Conversion (n=5) for Ia endoleak (n=3, 1x IFU 2016 cohort), AAA growth and para-aortitis
Management of type Ia after EVAS
Embolization with coils and glue/Onyx

Brownrigg et al. *Eur J Vasc Endovasc Surg* 2015: 50, 157-64.

Suitable in patients with 1S1 leak and 1S2 leak without migration
Management of type Ia after EVAS

Proximal extension with secondary Nellix

Suitable in patients with migration with or without an endoleak
DEVASS cohort; learning curve

- First 15 cases of each site versus the later cases
- Significantly more re-interventions in early cases (13.3% vs. 7.3%); mostly reinterventions for stenosis/occlusion

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative neck length</td>
<td>18mm (IQR 12-31)</td>
<td>20mm (IQR 15-31)</td>
</tr>
<tr>
<td>Seal length</td>
<td>14mm (IQR 7-25)</td>
<td>14mm (IQR 11-24)</td>
</tr>
<tr>
<td>Complicated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative neck length</td>
<td>16mm (IQR 13-23)</td>
<td>21mm (IQR 12-32)</td>
</tr>
<tr>
<td>Seal length</td>
<td>11mm (IQR 7-18)</td>
<td>14mm (IQR 6.5-27)</td>
</tr>
</tbody>
</table>
Conclusions

• EVAS used in patients inside the current IFU is related to good outcomes at 2 years follow-up
• The current IFU has significantly reduced the applicability of the technique
• IFU not only includes anatomical features but also best practice
• The positive impact of the distal endobag attachment of the new device on distal seal and subsequent AAA growth remains to be shown
• EVAS-Global-2 Registry will show the results of the latest generation device with the current best practice within the IFU
The DEVASS study: Influence of patient selection on outcomes following EVAS with Nellix within the various IFU

Michel Reijnen
Rijnstate Arnhem
The Netherlands