Geometrical remodeling of the aortic arch after hybrid treatment

A. Finotello1*, G. Spinella2, M. Conti3, E. Faggiano3, B. Pane2, F. Auricchio3, D. Palombo2

1 Department of Experimental Medicine, University of Genoa, Genoa, Italy
2 Vascular and Endovascular Unit, IRCCS San Martino IST, University of Genoa, Genoa, Italy
3 Department of Civil and Architecture, University of Pavia, Pavia, Italy

AIM

To measure the morphological remodeling of the thoracic aorta and aortic arch after hybrid treatment, which could be potentially related to clinical complications.

MATERIALS AND METHODS

Study design. Pre-operative and the 1-month post-operative CT scans are analyzed in order to reconstruct and compare the 3D shape of both the aortic lumen and endograft.

RESULTS

1 month FU results are reported.

Clinical parameters

<table>
<thead>
<tr>
<th>TOTAL (n=22)</th>
<th>ZONE 0 (n=10)</th>
<th>ZONES 1-2 (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical success</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Mortality</td>
<td>4.55 %</td>
<td>4.55 %</td>
</tr>
<tr>
<td>Reintervention rate</td>
<td>9.10 %</td>
<td>4.55 %</td>
</tr>
<tr>
<td>RTAD Endoleaks</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Changes between pre-op and 1 month FU centerline values are reported.

- **L: CENTERLINE LENGTH**
 - TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
 - +5.34 mm (P<0.05)
 - +9.00 mm (P<0.05)
 - +2.46 mm (P>0.05)

- **D_{AR-LSA}: DISTANCE AORTIC-ROOT – LEFT SUBCLAVIAN ARTERY**
 - TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
 - +2.91 mm (P=0.01)
 - +3.50 mm (P>0.05)
 - +1.78 mm (P>0.05)

- **CVD: CENTERLINE VASCULAR DISTANCE**
 - TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
 - +1.12 mm (P>0.05)
 - +0.73 mm (P>0.05)
 - +1.40 mm (P>0.05)

Point-wise curvature of the centerline: inverse of the radius of the circle which approximates the centerline in a given point.

- Type IA endoleak
- Greater risk of proximal neck degeneration

Mean curvature: point-wise curvature values are averaged to compute mean curvature of the three aortic segments.

AA: ASCENDING AORTA

| TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 7 % (P<0.01)</td>
<td>+ 14 % (P<0.01)</td>
<td>+ 1.5 % (P>0.05)</td>
</tr>
</tbody>
</table>

SR: STENTED REGION

| TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.3 % (P=0.005)</td>
<td>-3 % (P=0.05)</td>
<td>-3.5 % (P=0.05)</td>
</tr>
</tbody>
</table>

DA: DESCENDING AORTA

| TOTAL (n=22) | ZONE 0 (n=10) | ZONES 1-2 (n=12)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 7 % (P>0.05)</td>
<td>+ 15 % (P>0.05)</td>
<td>+ 0.5 % (P>0.05)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- Hybrid arch repair is associated with a significant elongation of the vessel and a significant increase of curvature on the ascending aorta and on endograft proximal and distal landing zones.
- No evidence of a relationship of such remodeling with the type of endograft and type of pathology was observed.
- Curvature changes correlate with complications occurred at short or mid-term follow-up.

*alice.finotello0@gmail.com
