Leave Nothing Behind 2.0: Combination Therapy To Advance SFA Treatment Strategy

SFA disease management: Are the Long term outcomes with IN.PACT DCB Changing the Peripheral Landscape

Thomas Zeller, MD
Department of Angiology
University Heart Center Freiburg-Bad Krozingen
Bad Krozingen, Germany
For the 12 months preceding this presentation, I disclose the following types of financial relationships:

- **Honoraria received from:** Abbott Vascular, Bard Peripheral Vascular, Veryan, Biotronik, Boston Scientific Corp., Cook Medical, Gore & Associates, Medtronic, Spectranetics, TriReme, VIVA Physicians, GLG, Philips, Shockwave, Intact

- **Consulted for:** Abbott Vascular, Bard Peripheral Vascular, Boston Scientific Corp., Cook Medical, Gore & Associates, Medtronic, Spectranetics, Intact

- **Research, clinical trial, or drug study funds received from:**
 - 480 biomedical, Bard Peripheral Vascular, Veryan, Biotronik, Cook Medical, Gore & Associates, Abbott Vascular, Medtronic, Spectranetics, Terumo, TriReme, Philips, Intact Vascular, Caveo Med, Innora, CSI, Bayer Pharma, Mercator, B. Braun, Contego Medical, Pluristem, Shockwave
Background

• Drug-coated balloons (DCBs) have significantly changed the management of symptomatic peripheral arterial disease

• DCBs have shown improved outcomes over angioplasty at 1 and 2 years\(^1\)-\(^7\) in RCTs, with the IN.PACT Admiral DCB showing sustained and durable treatment benefit through 4 years\(^8\),\(^9\)

• Beyond RCTs, real world registries enrolling more complex disease, show an increased reliance to provisional stenting\(^10\)-\(^12\)

1. Tepe G. et al., Circulation. 2015.
2. Laird et al., J Am Coll Cardiol. 2015.
4. Laurich C. LEVENT II 2 Year Results, SVS 2015.
7. Brodmann M, ILLUMENATE EU RCT 2 Year Results VIVA 2017
8. Schneider P et al., 2018;11:e005891 Circulation CI
9. Schneider, P. IN.PACT SFA 4 Year Results, VIVA 2017
10. Scheinert D. IN.PACT Global LL, EuroPCR 2015
11. Tepe G. IN.PACT Global CTO, CX 2016
Worldwide Available DCBs

Selected Products

DCBs have demonstrated promising results at 1- and 2-years in randomized trials. Longer-term data for commercially available DCBs are limited.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>DCB</th>
<th>Dose (μg/mm²)</th>
<th>Excipient</th>
<th>RCT Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARD</td>
<td>Lutonix</td>
<td>2.0</td>
<td>Polysorbate/Sorbitol</td>
<td>1- and 2-year</td>
</tr>
<tr>
<td>Medtronic</td>
<td>IN.PACT</td>
<td>3.5</td>
<td>Urea</td>
<td>1-, 2-, 3-, 4-year</td>
</tr>
<tr>
<td>Spectranetics</td>
<td>Stellarex</td>
<td>2.0</td>
<td>Polyethylene Glycol</td>
<td>1- and 2-year</td>
</tr>
<tr>
<td>Boston Scientific</td>
<td>Ranger</td>
<td>2.0</td>
<td>Citrate Ester</td>
<td></td>
</tr>
<tr>
<td>BIOTRONIK</td>
<td>Passeo-18 Lux</td>
<td>3.0</td>
<td>BTHC</td>
<td></td>
</tr>
<tr>
<td>B Braun</td>
<td>SeQuent Please OTW</td>
<td>3.0</td>
<td>Resveratrol</td>
<td></td>
</tr>
<tr>
<td>iVascular</td>
<td>Luminor</td>
<td>3.0</td>
<td>Ester</td>
<td></td>
</tr>
<tr>
<td>COOK</td>
<td>Advance 18 PTX</td>
<td>3.0</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Aachen Resonance</td>
<td>Elutax SV</td>
<td>2.2</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>BIOSENSORS</td>
<td>BioPath (FREEWAY)</td>
<td>3.0</td>
<td>Shellac</td>
<td></td>
</tr>
<tr>
<td>CARDIONOVUM</td>
<td>Legflow</td>
<td>3.0</td>
<td>Shellac</td>
<td></td>
</tr>
</tbody>
</table>

1. Tepe G. et al., Circulation. 2015.
2. Laird et al., J Am Coll Cardiol. 2015.
4. Laurich C. LEVENT II 2 Year Results, SVS 2015.
8. Schneider, P. IN.PACT SFA 4 Year Results, VIVA 2017.
FDA Approved Drug-Coated Balloons

Summary of Multicenter RCTs

- **LEVANT II**: PSVR ≤ 2.5 and freedom from TLR\(^1\)-\(^2\)
- **IN.PACT SFA**: PSVR ≤ 2.4 and freedom from CD-TLR\(^3\)-\(^5\)
- **ILLUMENATE EU and US RCTs**: PSVR ≤ 2.5 and freedom from CD-TLR\(^6\)-\(^7\)

<table>
<thead>
<tr>
<th></th>
<th>LEVANT II Trial(^1)-(^2)</th>
<th>IN.PACT SFA Trial(^3)-(^5)</th>
<th>ILLUMENATE EU RCT(^6)</th>
<th>ILLUMENATE Pivotal(^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutonix O35</td>
<td>73.5%</td>
<td>IN.PACT Admiral</td>
<td>87.5%</td>
<td>Stellarex</td>
</tr>
<tr>
<td></td>
<td>△16.7% P<0.001</td>
<td>△31.7% P<0.001</td>
<td>△24.0% P<0.001</td>
<td>△11.4% P<0.002</td>
</tr>
<tr>
<td>PTA</td>
<td>56.8%</td>
<td>55.8%</td>
<td>65.0%</td>
<td>70.9%</td>
</tr>
<tr>
<td>2-yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lutonix O35</td>
<td>58.6%</td>
<td>IN.PACT Admiral</td>
<td>78.9%</td>
<td>Stellarex</td>
</tr>
<tr>
<td></td>
<td>△5.6% P<0.05</td>
<td>△28.8% P<0.001</td>
<td>△14.0% P<0.004</td>
<td>△11.4% P<0.002</td>
</tr>
<tr>
<td>PTA</td>
<td>53.0%</td>
<td>50.1%</td>
<td>61.2%</td>
<td></td>
</tr>
<tr>
<td>3-yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN.PACT Admiral</td>
<td>69.5%</td>
<td>△24.4% P<0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTA</td>
<td>45.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primary patency rates derived from respective trials’ Kaplan Meier estimates.

IN.PACT SFA Trial: Overview

Objective: Assess the safety and efficacy of IN.PACT™ Admiral™ DCB vs. standard PTA for the treatment of superficial femoral and proximal popliteal artery disease due to claudication and rest pain

- Prospective, multicenter EU and US, randomized (2:1), single-blinded trial
- 331 patients enrolled:
 - IN.PACT™ Admiral™ DCB (n = 220) vs. PTA (n = 111)
- Rutherford Clinical Category 2-4
- Lesion lengths 4-18 cm or occlusions ≤ 10 cm
- Subjects followed up to 5 years
- Independent and blinded core labs and clinical events committee:
 - Duplex Ultrasound Core Lab: VasCore DUS Core Laboratory; Boston, MA, USA
 - Angiographic Core Lab: SynvaCor Angiographic Core Laboratory; Springfield, IL, USA
 - Clinical Events Committee and Data Safety Monitoring: HCRI; Boston, MA, USA

IN.PACT SFA Trial
Primary Patency\(^1\) Results Through 3 Years

1. Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) or clinically-driven target lesion revascularization through 36 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment)

2. Number at risk represents the number of evaluable subjects at the beginning of the 30-day window prior to each follow-up interval

Schneider P et al. 2018;11:e005891 Circulation CI
Clinically-driven TLR adjudicated by an independent Clinical Event Committee, blinded to the assigned treatment based on any re-intervention at the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI
IN.PACT SFA Trial
Additional Outcomes Through 4 Years

<table>
<thead>
<tr>
<th></th>
<th>IN.PACT DCB (N=220)</th>
<th>PTA (N=111)</th>
<th>P-value(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically-driven TLR (^1)</td>
<td>23.4% (43/184)</td>
<td>31.1% (32/103)</td>
<td>0.164</td>
</tr>
<tr>
<td>Any TLR (^2)</td>
<td>24.5% (45/184)</td>
<td>34.0% (35/103)</td>
<td>0.100</td>
</tr>
<tr>
<td>Time to First CD-TLR</td>
<td>739.2 ± 384.0</td>
<td>302.9 ± 213.0</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Time to First CD-TLR

- **IN.PACT DCB**: 739.2 days
- **PTA**: 302.9 days

DOUBLE Time to first reintervention with IN.PACT DCB

\(^1\) P-value
\(^2\) Any TLR
Robust IN.PACT™ Admiral™ DCB Clinical Program

IN.PACT DCB Clinical Data for the SFA

RCTs + Approval Studies

IN.PACT SFA RCT
- Gender Subset
- Diabetic Subset

IN.PACT JAPAN RCT

IN.PACT China

Real-World Study

IN.PACT Global Study
- Pre-specified Imaging Cohorts
 - Long Lesion
 - ISR
 - CTO
- Regional Subset
 - Belgian
 - ASEAN

Real-World Study
IN.PACT Global Study Overview

Real-world, prospective, multicenter, single arm study with independent adjudication to expand clinical evidence of the IN.PACT™ Admiral™ DCB in the treatment of patients with femoropopliteal lesions.

- Independent adjudication by Clinical Events Committee
- Prospective subset analysis with core lab reported results (de novo ISR, long lesions ≥15 cm, CTOs ≥5 cm)

All-comers RCC 2-4
- Bilateral disease
- Multiple lesions
- SFA and Popliteal
- TASC A, B, C, D
- De novo ISR
- Long Lesions
- CTOs

1535 Subjects Enrolled
- 150 mm DCB Cohort 119 Subjects
- 1416 Subjects
- VIVA 2016 M. Jaff
- De novo ISR 131 Subjects
- Long Lesion (≥15 cm) 157 Subjects
- CTO (≥5 cm) 126 Subjects
- VIVA 2015 M. Brodmann
- EuroPCR 2015 D. Scheinert
- Charing Cross 2016 G. Tepe

*Analysis is based on the 1406 ITT subjects.
1Syntactx Clinical Events Committee, New York, NY, US; 2VasCore DUS Core Lab, Boston, MA, US; 3SynvaCor Angiographic Core Lab, Springfield, IL, US
Jaff, M. VIVA 2016
IN.PACT Global Study

Freedom from CD-TLR 1 Through 2 Years

1. Number at risk represents the number of evaluable subjects at the beginning of the each 60-day window
IN.PACT Clinical Program

12-month Outcomes

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Study Description</th>
<th>12-Month Patency</th>
<th>12-Month CD-TLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCTs</td>
<td>IN.PACT SFA (EU+US)</td>
<td>87.5%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Approval Study</td>
<td>IN.PACT Japan</td>
<td>93.9%</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>IN.PACT China</td>
<td>90.2%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Pre-Specified Cohorts</td>
<td>Long Lesion</td>
<td>91.1%</td>
<td>6.0%</td>
</tr>
<tr>
<td></td>
<td>ISR</td>
<td>88.7%</td>
<td>7.3%</td>
</tr>
<tr>
<td></td>
<td>CTO</td>
<td>85.3%</td>
<td>11.3%</td>
</tr>
<tr>
<td></td>
<td>Belgian</td>
<td>NR</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>ASEAN</td>
<td>NR</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

2. Iida O et al. JEVT, 2017:1526602817745565
3. Presented by Chen Z. VEITH 2017
DCB “Real-World” Registries

Global registries include real-world patients and lesions

<table>
<thead>
<tr>
<th>Key Inclusion Criteria</th>
<th>Global¹</th>
<th>Long Lesion²</th>
<th>Long Lesion³</th>
<th>CTO⁴</th>
<th>ISR⁵</th>
<th>Clinical⁶</th>
<th>ILLUMENATE Global⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC ≤4 SFA & PA</td>
<td>RCC 2-4 SFA & PA</td>
<td>RCC 2-4 SFA & PA</td>
<td>RCC 2-4 SFA & PA CTOs</td>
<td>RCC 2-4 SFA & PA ISR</td>
<td>RCC 2-4 SFA & PA</td>
<td>RCC 2-4 SFA & PA</td>
<td></td>
</tr>
<tr>
<td>Key Patient Characteristics</td>
<td>68.3y</td>
<td>67.6y</td>
<td>69.5y</td>
<td>67.5y</td>
<td>67.8y</td>
<td>68.6y</td>
<td>68.2y</td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.0%</td>
<td>6.1%</td>
<td>16.7%</td>
<td>11.1%</td>
<td>10.0%</td>
<td>11.0%</td>
<td>8.6%</td>
</tr>
<tr>
<td>RCC ≥4 (%)</td>
<td>67.6%</td>
<td>73.7%</td>
<td>66.2%</td>
<td>69.0%</td>
<td>69.5%</td>
<td>67.8%</td>
<td>73.0%</td>
</tr>
<tr>
<td>Men (%)</td>
<td>39.5%</td>
<td>36.4%</td>
<td>41.0%</td>
<td>29.6%</td>
<td>35.1%</td>
<td>39.9%</td>
<td>33.7%</td>
</tr>
<tr>
<td>DM (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Lesion Characteristics</td>
<td>10.1cm</td>
<td>21.3cm</td>
<td>26.4cm</td>
<td>22.9cm</td>
<td>17.2cm</td>
<td>12.1cm</td>
<td>7.5cm</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>31.2%</td>
<td>52.1%</td>
<td>60.4%</td>
<td>100.0%</td>
<td>34.0%</td>
<td>35.5%</td>
<td>31.3%</td>
</tr>
<tr>
<td>CTO (%)</td>
<td>50.2%</td>
<td>78.9%²</td>
<td>71.8%</td>
<td>71.0%</td>
<td>59.1%</td>
<td>68.7%</td>
<td>56.2%³</td>
</tr>
<tr>
<td>Ca²⁺ (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Bard Lutonix Instructions for Use BAW1387400r3, Section 10.5. Moderate to severe calcification reported; amputations not reported (NR).
DCB “Real-World” Registries

Similar outcomes despite potential differences in populations and lesions, as well as reliance on provisional stenting

<table>
<thead>
<tr>
<th>12-mo Outcomes</th>
<th>Global<sup>1</sup></th>
<th>Long Lesion<sup>2</sup></th>
<th>Long Lesion<sup>3</sup></th>
<th>CTO<sup>4</sup></th>
<th>ISR<sup>5</sup></th>
<th>Clinical<sup>6</sup></th>
<th>ILLUMINATE Global<sup>7</sup> Stellarex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up</td>
<td>Complete follow-up</td>
<td>107 & 102 subjects for safety & effectiveness, respectively; Core lab-adjudicated</td>
<td>157 subjects Complete follow-up; Core lab-adjudicated</td>
<td>126 subjects Complete follow-up; Core lab-adjudicated</td>
<td>131 subjects Complete follow-up; Core lab-adjudicated</td>
<td>1406 subjects Complete follow-up; CEC & site-reported outcomes</td>
<td>371 subjects Complete follow-up; Core lab-adjudicated</td>
</tr>
<tr>
<td>1<sup>st</sup> Patency (%)</td>
<td>691 subjects</td>
<td>68.9%</td>
<td>91.1%</td>
<td>85.3%</td>
<td>88.7%</td>
<td>NR</td>
<td>81.4%</td>
</tr>
<tr>
<td>FF TLR/CD-TLR (%)</td>
<td>94.3%</td>
<td>87.8%</td>
<td>94.0%</td>
<td>89.1%</td>
<td>92.9%</td>
<td>92.6%</td>
<td>94.8%</td>
</tr>
<tr>
<td>Bail-out Stent (%)</td>
<td>25.2%</td>
<td>39.8%</td>
<td>40.4%</td>
<td>46.8%</td>
<td>14.5%</td>
<td>25.3%</td>
<td>17.3%</td>
</tr>
<tr>
<td>Amputations (%)</td>
<td>0.5% (3/632)</td>
<td>NR</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.2% (3/1311)</td>
<td>0.3% (1/371)</td>
</tr>
</tbody>
</table>

2. Bard Lutonix Instructions for Use BAW1387400r3, Section 10.5. Moderate to severe calcification reported; amputations not reported (NR).
DCB “Real-World” Registries

Similar outcomes despite potential differences in populations and lesions, as well as reliance on provisional stenting
Consistently low frequency of major amputation across platforms

<table>
<thead>
<tr>
<th>Follow-up</th>
<th>Global¹</th>
<th>Long Lesion²</th>
<th>Long Lesion³</th>
<th>CTO⁴</th>
<th>ISR⁵</th>
<th>Clinical⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>691 subjects</td>
<td>107 & 102 subjects</td>
<td>157 subjects</td>
<td>126 subjects</td>
<td>131 subjects</td>
<td>1406 subjects</td>
</tr>
<tr>
<td></td>
<td>Complete follow-up</td>
<td>Complete follow-up; Core lab-adjudicated</td>
<td>Complete follow-up; Core lab-adjudicated</td>
<td>Complete follow-up; Core lab-adjudicated</td>
<td>Complete follow-up; CEC & site-reported outcomes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12-mo Outcomes</th>
<th>Global¹</th>
<th>Long Lesion²</th>
<th>Long Lesion³</th>
<th>CTO⁴</th>
<th>ISR⁵</th>
<th>Clinical⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° Patency (%)</td>
<td>NR</td>
<td>68.9%</td>
<td>91.1%</td>
<td>85.3%</td>
<td>88.7%</td>
<td>NR</td>
</tr>
<tr>
<td>FF TLR/CD-TLR(%)</td>
<td>94.3%</td>
<td>87.8%</td>
<td>94.0%</td>
<td>89.1%</td>
<td>92.9%</td>
<td>92.6%</td>
</tr>
<tr>
<td>Bail-out Stent (%)</td>
<td>25.2%</td>
<td>39.8%</td>
<td>40.4%</td>
<td>46.8%</td>
<td>14.5%</td>
<td>25.3%</td>
</tr>
<tr>
<td>Amputations (%)</td>
<td>0.5% (3/632)</td>
<td>NR</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.2% (3/1311)</td>
</tr>
</tbody>
</table>

2. Bard Lutonix Instructions for Use BAW1387400r3, Section 10.5. Moderate to severe calcification reported; amputations not reported (NR).
Treatment Algorithm in TASC C & D Femoro-Popliteal Lesions

Vessel Preparation (lesion specific)
(PTA, Specialty Balloon, Directional Atherectomy)

In case of severe dissection / recoil

Good result

DES / Supera / Viabahn

DCB according to the RVD + 1mm

Atherectomy & DCB

Additional BMS on indication
Conclusion

• DCBs have become the mainstay in my treatment algorithm for the SFA
• Allowing for aggressive treatment of more complex disease
• Decreased the use of stents
• DCBs afford interventionalist the ability to practice “leave nothing behind” preserving future treatment options
Leave Nothing Behind 2.0: Combination Therapy To Advance SFA Treatment Strategy

SFA disease management: Are the Long term outcomes with IN.PACT DCB Changing the Peripheral Landscape

Thomas Zeller, MD
Department of Angiology
University Heart Center Freiburg-Bad Krozingen
Bad Krozingen, Germany