Mid-Term Outcomes of Flared Iliac Limb Used for Combined Common Iliac Artery Aneurysm during EVARs

Seon-Hee Heo, B-H Chung, D-H Lee, D-I Kim, Y-W Kim, Yang-Jin Park*

Vascular Surgery, Samsung Medical Center
Sungkyunkwan University School of Medicine Seoul, Korea
Conflicts of Interests

No Disclosure
Introduction

- Common iliac artery (CIA) aneurysms have been reported to be combined in 15% to 40% of patients with abdominal aortic aneurysms (AAAs).

- Ectatic CIA can be treated with flared iliac limbs but a dilated artery used as a sealing zone could increase the risk of a late type 1b endoleak (EL) by 4.5-folds.

- Additional iliac artery growth after EVAR could be associated with increased secondary interventions and/or late aneurysm rupture.

References:
Purpose

- To determine the outcomes of flared iliac limb used for combined common iliac artery aneurysm (CIAA) during endovascular aneurysm repair (EVAR) for AAA
Methods

- From January 2005 to September 2017
- The single center, retrospective study
- Total 444 cases of EVAR
 - Inclusion: 184 CIAAs in 149 patients
 - Group 1: Flared iliac limb (≥ 24mm)
 - 77 limbs in 67 patients
 - Group 2: Hypogastric artery embolization with iliac limb extension
 - 107 limbs in 98 patients
- Exclusion
 - Ruptured AAA, isolated iliac artery aneurysm
Methods

- Early 30-day outcomes
 - Perioperative Type Ib / III
 - Adjuvant or reintervention
 - Limb occlusion/stenosis >50%
 - Mortality and morbidity

- Late outcomes
 - Late Type Ib / III
 - Re-intervention
 - Limb patency
 - Survival
Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Flared limb (n=67)</th>
<th>IIE + EE (n=98)</th>
<th>Total (n=165)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (years, IQR)</td>
<td>72 (68-77)</td>
<td>71 (66-77)</td>
<td>71.5 (67-77)</td>
<td>0.492<sup>a</sup></td>
</tr>
<tr>
<td>AAA (Max. size, mm, IQR)</td>
<td>53.2 (51.3-58)</td>
<td>53.2 (50.9-62)</td>
<td>53.2 (51-60.6)</td>
<td>0.397<sup>a</sup></td>
</tr>
<tr>
<td>Male</td>
<td>70 (90.9)</td>
<td>98 (91.6)</td>
<td>168 (91.3)</td>
<td>0.872<sup>b</sup></td>
</tr>
<tr>
<td>Indication of EVAR</td>
<td></td>
<td></td>
<td></td>
<td>0.176<sup>b</sup></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>64 (83.1)</td>
<td>80 (74.8)</td>
<td>144 (78.3)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic</td>
<td>13 (16.9)</td>
<td>27 (25.2)</td>
<td>40 (21.7)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>63 (81.3)</td>
<td>71 (66.4)</td>
<td>134 (72.8)</td>
<td>0.020<sup>b</sup></td>
</tr>
<tr>
<td>COPD</td>
<td>24 (32.0)</td>
<td>19 (18.8)</td>
<td>43 (24.4)</td>
<td>0.044<sup>b</sup></td>
</tr>
<tr>
<td>Diabetes</td>
<td>15 (19.5)</td>
<td>23 (21.5)</td>
<td>38 (20.7)</td>
<td>0.739<sup>b</sup></td>
</tr>
<tr>
<td>Smoking</td>
<td>40 (53.3)</td>
<td>59 (53.5)</td>
<td>99 (53.8)</td>
<td>0.668<sup>b</sup></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>48 (64.0)</td>
<td>46 (43.0)</td>
<td>94 (51.1)</td>
<td>0.010<sup>b</sup></td>
</tr>
<tr>
<td>IHD</td>
<td>19 (25.3)</td>
<td>33 (30.8)</td>
<td>52 (28.3)</td>
<td>0.359<sup>b</sup></td>
</tr>
<tr>
<td>Renal disease</td>
<td>2 (2.7)</td>
<td>3 (3.0)</td>
<td>5 (2.8)</td>
<td>1.000<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Mann-Whitney test; ^b Chi-square test; ^c Fisher’s exact test
30-day Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Flared limb (n=77)</th>
<th>IIE + EE (n=107)</th>
<th>Total (n=184)</th>
<th>P-value</th>
</tr>
</thead>
</table>
| **Type Ib or III** | 7 (9.1) | 1 (0.9) | 9 (4.9) | **0.010**
| **Intraoperative Ib** | 7 (9.1) | 0 | 7 (3.8) | |
| **Limb occlusion or stenosis (>50%)** | 1 (1.3) | 0 | 1 (0.5) | **0.418**
| **Adjuvant or 2nd intervention** | 8 (10.4) | 1 (0.9) | 9 (4.9) | **0.004**
| **Mortality** | 0 | 0 | 0 | |

a Fisher’s exact test
Late Outcomes

Median follow up duration of 24.4 months

<table>
<thead>
<tr>
<th>Type</th>
<th>Flared limb (n=77)</th>
<th>IIE + EE (n=107)</th>
<th>Total (n=184)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Ib</td>
<td>1 (1.3)</td>
<td>0</td>
<td>1 (0.5)</td>
<td>0.418<sup>c</sup></td>
</tr>
<tr>
<td>Type III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Limb occlusion or stenosis (>50%)</td>
<td>1 (1.3)</td>
<td>1 (0.9)</td>
<td>2 (2.2)</td>
<td>1.000<sup>c</sup></td>
</tr>
<tr>
<td>Re-intervention</td>
<td>2 (2.6)</td>
<td>1 (0.9)</td>
<td>3 (1.6)</td>
<td>1.000<sup>c</sup></td>
</tr>
<tr>
<td>Mortality<sup>a</sup></td>
<td>7 (9.1)</td>
<td>11 (10.3)</td>
<td>18 (9.8)</td>
<td>0.789<sup>b</sup></td>
</tr>
<tr>
<td>Median OPD f/u (IQR, mo)</td>
<td>20.9 (7.5-38.2)</td>
<td>30.4 (6.9-61.6)</td>
<td>24.4 (7.5-55.3)</td>
<td>0.116<sup>b</sup></td>
</tr>
<tr>
<td>Median CT/duplex f/u (IQR, mo)</td>
<td>12.0 (1.7-31.8)</td>
<td>17.8 (4.2-51.7)</td>
<td>14.1 (3.6-44.3)</td>
<td>0.159<sup>b</sup></td>
</tr>
</tbody>
</table>

^a No aneurysm-related mortality
^b Chi-square test; ^c Fisher’s exact test
Results

Cumulative Type 1b/3 endoleak

Cumulative Limb patency

$P = 0.001$ (Log rank test)

$P = 0.720$ (Log rank test)
Results

Reintervention-free patients survival

Reintervention-free rate (%)

$P = 0.040$ (Log rank test)

$P = 0.006$ (Log rank test)
Case 1.

- 82/M
- 2017.8.18 EVAR d/t AAA (53mm)
Case 2.

- 78/M
- 2013.6.28 EVAR d/t AAA (51mm)
4 years later
Conclusions

- There was a significant higher incidence of type 1b endoleak and intraoperative adjuvant or 2nd re-intervention in flared limb group compared to limb extension during EVAR in the mid-term.

- Close long term follow-up and careful surveillance is mandatory.

- Further study for the risk factors which could be related with late type 1b EL after flared iliac limb usage, would be necessary.
Thank you for your kind attention
Mid-Term Outcomes of Flared Iliac Limb Used for Combined Common Iliac Artery Aneurysm during EVARs

Seon-Hee Heo, B-H Chung, D-H Lee, D-I Kim, Y-W Kim, Yang-Jin Park*

Vascular Surgery, Samsung Medical Center
Sungkyunkwan University School of Medicine Seoul, Korea