Treating Aortic Aneurysms With Large Necks: What Are The Considerations?

Hence JM Verhagen, MD PhD
Professor and Chief of Vascular Surgery
Erasmus University Medical Center; Rotterdam, The Netherlands

Nelson Oliveira, Klaas Ultee, José Pinto, Marie Josee van Rijn, Sander Ten Raa, Patrice Mwipatayi, Dittmar Böckler, Sanne Hoeks, Joost van Herwaarden, Jean Paul de Vries, Frederico Bastos Gonçalves
Disclosures

• Medtronic
• WL Gore
• Philips
• Endologix
• Arsenal AAA
EVAR has expanded to treat more challenging anatomies although it is associated with increased risk of adverse events.

In patients with wide necks, EVAR has acceptable short-term results but longer-term results are contradictory.

To expand eligibility, industry has increased graft diameters, allowing implants in attachment zones that are aneurysmal.
Objective

• To determine longer-term outcomes following EVAR in patients with large neck diameters, using a single endograft

Hypothesis

• Standard EVAR in patients with an infrarenal neck ≥ 30 mm is associated with an increased risk of neck-related complications
Methods

- Retrospective case-control study based on prospective database from 3 high-volume centers in the Netherlands

- Consecutive patients undergoing standard EVAR with Endurant between 2008-2012

- Exclusion: ✓ Anastomotic, infectious, or iliac aneurysms
 ✓ Andoanchors
 ✓ No CTA available
Methods

• **Study group:** Patients with infrarenal neck diameter of ≥ 30 mm

• **Controls:** Remaining population
Methods

- Measurements by 2 experienced, independent observers using dedicated post-processing software (3Mensio)
- Analysis: preoperative, 30-day, and last available CTA

- **Primary end point:** Neck-related adverse events
- **Secondary end points**
 - Type 1A EL
 - FF neck-related reinterventions
 - Clinical success
 - EL
 - AR secondary interventions
Results

- 427 patients were included, median FU time of 3.9 years

- **Study group:** 74 Patients with infrarenal neck diameter \(\geq 30 \text{ mm} \)

- **Controls:** 353 Patients
Results

Neck-related adverse events

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal neck-related adverse events</td>
<td>12 (16.2)</td>
<td>3.76</td>
<td>1.55-9.12</td>
<td>.003</td>
</tr>
<tr>
<td>Aneurysm-related adverse events</td>
<td>14 (18.9)</td>
<td>1.71</td>
<td>0.83-3.51</td>
<td>.15</td>
</tr>
<tr>
<td>Any endoleak</td>
<td>18 (24.3)</td>
<td>1.37</td>
<td>0.72-2.59</td>
<td>.34</td>
</tr>
<tr>
<td>Type Ia endoleak</td>
<td>7 (9.5)</td>
<td>2.67</td>
<td>0.96-8.30</td>
<td>.05</td>
</tr>
<tr>
<td>Type I and III endoleaks</td>
<td>11 (14.9)</td>
<td>3.06</td>
<td>1.30-7.19</td>
<td>.01</td>
</tr>
<tr>
<td>Type II endoleak</td>
<td>11 (14.9)</td>
<td>0.91</td>
<td>0.44-1.91</td>
<td>.81</td>
</tr>
<tr>
<td>Migration >10 mm</td>
<td>0 (0.0)</td>
<td>1.85</td>
<td>0.93-3.69</td>
<td>.08</td>
</tr>
<tr>
<td>Aneurysm sac growth</td>
<td>13 (20.6)</td>
<td>1.45</td>
<td></td>
<td>.95</td>
</tr>
<tr>
<td>Aneurysm rupture</td>
<td>1 (1.4)</td>
<td>.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aneurysm-related mortality</td>
<td>1 (1.4)</td>
<td>.69</td>
<td></td>
<td>.22</td>
</tr>
<tr>
<td>Open conversion</td>
<td>0 (0)</td>
<td>.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck-related secondary interventions</td>
<td>7 (9.5)</td>
<td>3.19</td>
<td>1.11-9.17</td>
<td>.03</td>
</tr>
<tr>
<td>Secondary interventions</td>
<td>13 (17.6)</td>
<td>1.20</td>
<td>0.58-2.46</td>
<td>.62</td>
</tr>
<tr>
<td>Primary clinical success</td>
<td>56 (75.7)</td>
<td>0.92</td>
<td>0.49-1.73</td>
<td>.79</td>
</tr>
<tr>
<td>Secondary clinical success</td>
<td>61 (82.4)</td>
<td>0.78</td>
<td>0.38-1.61</td>
<td>.51</td>
</tr>
</tbody>
</table>
Results

FF Neck-related adverse events
Results
Clinical success

![Graph showing clinical success over follow-up time with data Table:]

<table>
<thead>
<tr>
<th>Proximal neck diameter ≥30mm</th>
<th>N at risk</th>
<th>Freedom from event</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>51</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>-</td>
<td>72.5</td>
<td>62.3</td>
<td>52.5</td>
</tr>
<tr>
<td>-</td>
<td>.08</td>
<td>.06</td>
<td>.06</td>
</tr>
<tr>
<td>17</td>
<td>41</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>-</td>
<td>62.5</td>
<td>52.5</td>
<td>36.3</td>
</tr>
<tr>
<td>-</td>
<td>.06</td>
<td>.06</td>
<td>.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proximal neck diameter <30mm</th>
<th>N at risk</th>
<th>Freedom from event</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>353</td>
<td>306</td>
<td>271</td>
<td>226</td>
</tr>
<tr>
<td>-</td>
<td>90.4</td>
<td>83.4</td>
<td>72.5</td>
</tr>
<tr>
<td>-</td>
<td>.02</td>
<td>.02</td>
<td>.03</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

• No independent risk factor:

 Reversed tapered neck
 Thrombus in the neck (≥ 25%)

• No difference in neck dilatation over time between groups
Conclusion

• Standard EVAR in patients with wide infrarenal aneurysm necks is associated with increased risk of adverse events.

How’s that on a more global scale?
Methods – ENGAGE Registry
Largest Contemporary EVAR Registry with single stent graft (Endurant)

• N=1263 pts; Prospective/Consecutive Enrollment (2009-2010)
 • Initiated <1yr post-CE mark, to evaluate Endurant in real-world popula

• 79 Centers, across 30 Countries, on 6 Continents
 • Diverse patient and physician population

• Adherence to IFU advised; Off-IFU pts permitted

• High-Quality Data
 • 100% data management review
 • Independent data monitoring
 • Independent Clinical Event Committee
Methods

• Primary end point: - Type 1A endoleak

• Secondary end points - sec. interventions for type 1A EL
 - AAA sac growth
 - MAE
 - Rupture
 - ACM & ARM
Results

• 1257 patients were included, median FU time of 4.04 years

• Study group: 97 Patients with infrarenal neck diameter ≥ 30 mm

• Controls: 1160 Patients
Results

Patients with neck diameters ≥ 30 mm:

- 3-fold greater risk of developing type 1A EL
- 5-fold greater risk of aneurysm rupture
Conclusion

- Standard EVAR in patients with wide infrarenal aneurysm necks is associated with increased risk of type 1A EL, secondary interventions and ruptures.

- Other treatments (CHEVAR/FEVAR/OR) should be considered, weighing risks, costs, and expected outcomes.

- CT imaging should not be waived during surveillance as DUS / X-ray will not detect dilatation and loss of proximal seal before type 1A EL development.
Conclusion

• Loss of proximal seal with the Endurant is mainly due to progressive neck dilatation, not to migration.

• The primary use of endoanchors in wide necks to prevent further neck dilatation is an interesting concept, but still unproven.

• Our studies may serve as a standard to which this new concept can be compared.
Thank you
Treating Aortic Aneurysms With Large Necks: What Are The Considerations?

Hence JM Verhagen, MD PhD
Professor and Chief of Vascular Surgery
Erasmus University Medical Center; Rotterdam, The Netherlands

Nelson Oliveira, Klaas Ultee, José Pinto, Marie Josee van Rijn, Sander Ten Raa, Patrice Mwipatayi, Dittmar Böckler, Sanne Hoeks, Joost van Herwaarden, Jean Paul de Vries, Frederico Bastos Gonçalves