Outcome of thoracic endovascular aortic repair with single aortic arch chimney in high risk patients.

Ahmed Sameh Eleshra, Woon Heo, Kwang-Hun Lee, Hong-Sun Shim, Suk-Won Song.

Ahmed Sameh Eleshra
Assistant lecturer of vascular surgery, Mansoura university
Clinical and research fellow, vascular surgery and transplantation department, SNUBH
Clinical and research Aortic fellow, Hybrid Aortic Center, Severance Gangnam Hospital
Disclosure

Speaker name:

Ahmed Sameh Eleshra

I do not have any potential conflict of interest
Purpose

• Reporting our experience, selection criteria and outcome of single AAC.
• Preferable method in high risk patient with decreasing to gutter area related endoleak in multiple chimney stent grafts.
Patients and Methods

• A retrospective, Single center study (2012 - 2016).
• Gangnam Severance Endovascular Aortic Registry (332 patients whose aortic pathology managed by TEVAR).

• 24 patients underwent Single AAC TEVAR at our hybrid operation room.

• The indication for treatment (aortic aneurysm, Aortic dissection (Debakey I and III) and trauma (type I-IV)

• Both planned and unplanned chimney was included in this study.
Planning and selection

Ishimaru classification

- Comorbidities (age >65 years, coronary artery disease, heart failure, chronic obstructive disease, and impaired renal function)
- Anatomical characteristics (thoraco-sternotomy incision and two stage open repair)
- Risk for anticoagulation as in trauma patients.
- Combined both chimney and bypass in those with challenging anatomy.
Clinical practice zone 0 AAC
Zone 0 AAC
Results

Table I. Patients characteristics and demographic data

<table>
<thead>
<tr>
<th>Zone</th>
<th>N</th>
<th>Zone 1</th>
<th>N</th>
<th>Zone 2</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 0</td>
<td>4 (100)</td>
<td>Zone 1</td>
<td>1 (100)</td>
<td>Zone 2</td>
<td>17 (89.5)</td>
</tr>
<tr>
<td>Zone 1</td>
<td>1 (100)</td>
<td>Zone 2</td>
<td>19 (89.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td>19 (89.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Age (SD)**
 - Zone 0: 69.0 (10.9)
 - Zone 1: 72
 - Zone 2: 51.9 (19.8)

- **Males (%)**
 - Zone 0: 4 (100)
 - Zone 1: 1 (100)
 - Zone 2: 17 (89.5)

- **BMI (SD) (kg/m²)**
 - Zone 0: 23.6 (3.3)
 - Zone 1: 24.2
 - Zone 2: 24.4 (2.5)

- **Comorbidities**
 - **HTN (%)**
 - Zone 0: 4 (100)
 - Zone 1: 1 (100)
 - Zone 2: 8 (42.1)
 - **Smoking (%)**
 - Zone 0: 3 (75)
 - Zone 1: 1 (100)
 - Zone 2: 9 (47.4)
 - **Obesity (%)**
 - Zone 0: 1 (25)
 - Zone 1: 0
 - Zone 2: 4 (21.1)
 - **CAOD (%)**
 - Zone 0: 1 (25)
 - Zone 1: 0
 - Zone 2: 6 (31.6)
 - **CVA (%)**
 - Zone 0: 1 (25)
 - Zone 1: 0
 - Zone 2: 5 (26.3)
 - **CRF (%)**
 - Zone 0: 0
 - Zone 1: 0
 - Zone 2: 3 (15.8)

- **Pathology**
 - **Aneurysm (%)**
 - Zone 0: 3 (75)
 - Zone 1: 1 (100)
 - Zone 2: 3 (15.8)
 - **Dissection (%)**
 - Zone 0: 1 (25)
 - Zone 1: 0
 - Zone 2: 6 (31.6)
 - **Trauma (%)**
 - Zone 0: 0
 - Zone 1: 0
 - Zone 2: 10 (52.6)
 - **Prior aortic surgery (%)**
 - Zone 0: 1 (25)
 - Zone 1: 2 (10.6)

- **Clinical presentation**
 - **Elective (%)**
 - Zone 0: 3 (75)
 - Zone 1: 1 (100)
 - Zone 2: 4 (21.1)
 - **Emergency (%)**
 - Zone 0: 1 (25)
 - Zone 1: 0
 - Zone 2: 15 (79.9)
Table II. Procedure details

<table>
<thead>
<tr>
<th>Zone</th>
<th>Zone 0</th>
<th>Zone 1</th>
<th>Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N= 4</td>
<td>N= 1</td>
<td>N= 19</td>
</tr>
<tr>
<td>Procedure time (min) (SD)</td>
<td>372 (167)</td>
<td>210</td>
<td>119 (63)</td>
</tr>
<tr>
<td>CSF drainage (%)</td>
<td>1 (25)</td>
<td>0</td>
<td>3 (15.8)</td>
</tr>
<tr>
<td>General Anesthesia (%)</td>
<td>4 (100)</td>
<td>1 (100)</td>
<td>17 (89.5)</td>
</tr>
<tr>
<td>Company</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOK (%)</td>
<td>0</td>
<td>1 (100)</td>
<td>13 (68.4)</td>
</tr>
<tr>
<td>Medtronic (%)</td>
<td>4 (100)</td>
<td>0</td>
<td>6 (31.6)</td>
</tr>
<tr>
<td>Chimney insertion scenario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>planned</td>
<td>4 (100)</td>
<td>0</td>
<td>18 (94.7)</td>
</tr>
<tr>
<td>Unplanned</td>
<td>0</td>
<td>1 (100)</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Types of chimney stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iliac Limb</td>
<td>3 (75)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stent graft</td>
<td>1 (25)</td>
<td>1 (100)</td>
<td>15 (79.9)</td>
</tr>
<tr>
<td>Stent graft+ bare metal stent</td>
<td>0</td>
<td>0</td>
<td>3 (15.8)</td>
</tr>
<tr>
<td>Self-expandable stent</td>
<td>0</td>
<td>0</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Adjunctive procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open access</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Prior de-branching bypass grafts (n)</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Technical success (%)</td>
<td>4 (100)</td>
<td>1 (100)</td>
<td>19 (100)</td>
</tr>
</tbody>
</table>
Table III. In hospital and follow up outcome.

<table>
<thead>
<tr>
<th></th>
<th>Zone 0 N= 4</th>
<th>Zone 1 N= 1</th>
<th>Zone 2 N= 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 days outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>1 (25)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stroke (%)</td>
<td>0</td>
<td>0</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Paraplegia (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory failure (%)</td>
<td>1 (25)</td>
<td></td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Renal failure (%)</td>
<td>0</td>
<td>0</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>ICU (SD) (hours)</td>
<td>189 (249)</td>
<td>28</td>
<td>168 (195)</td>
</tr>
<tr>
<td>Length of hospital stay (SD) (days)</td>
<td>17.8 (11.4)</td>
<td>9</td>
<td>31.7 (28.3)</td>
</tr>
<tr>
<td>Follow up outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late surgical conversion (%)</td>
<td>0</td>
<td>0</td>
<td>1 (5.3)</td>
</tr>
<tr>
<td>Endoleak (%)</td>
<td>0</td>
<td>0</td>
<td>3 (15.8)</td>
</tr>
<tr>
<td>Re-intervention (%)</td>
<td>1 (25)</td>
<td>0</td>
<td>3 (15.8)</td>
</tr>
<tr>
<td>Patency of chimney stents (%)</td>
<td>4 (100)</td>
<td>1 (100)</td>
<td>18 (94.7)</td>
</tr>
</tbody>
</table>
Re-intervention
Complicated Case
Discussion

Open Repair

• Extensive Aortic aneurysm is a complex problem

But it can be managed safely.

Total endovascular repair
Selected cases

- Anatomic suitability
- Material availability
- Costs
- X-ray exposure
- Follow up?
Hybrid surgery

Open Surgery + Endovascular Repair

“The way to a wider application of endovascular technology for management of complex aortic disease”

Hollier LH. J Endovasc Surg 1998
AAC appeared to be acceptable less invasive treatment strategy in our high risk patients especially emergency situations.
A current systematic evaluation and meta-analysis of chimney graft technology in aortic arch

✓ Although, we did 67% of our procedures under emergency situation, our technical success was 100% perioperative overall mortality and neurological event was one patient (4.1%) for each.
Gutter endoleak

• TunWang et al, 26 reported that double chimney was associated with gutter endoleak in 13% that require re intervention.

• The largest published experience of AAC stents with TEVAR for zone 0 and zone 1 they had 11% endoleak and their re-intervention rate of (33%) that was contributed by them to the use of more than one AAC. (Igor Voskresensky et al, J Vasc Surg 2017; 66 (1): 9-20.-3)

• Our study had 3 endoleaks but no intervention for gutter area endoleak.
Home message

- Single AAC is safe and effective in high risk patients both for zone 0 and zone 2.

- single chimney decreasing rate of gutter area endoleak and of benign nature that sealed with cessation of anticoagulant.