CTV vs. MRV for imaging of venous disease

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico, Lugano
University of Bern
Switzerland
Venous imaging

• Phlebography
 – ‘gold standard’
 – Invasive
 – Risk of inducing DVT

• CT venography

• MR venography
 – Standard contrast agents
 – Blood pool contrast agents

Choi JW et al Int J Cardiovasc Imaging 2015;31:417-426
Blood pool contrast agents

- Iron oxide BPA (USPIO)
- Gadolinium-based BPA (gadofosveset)
Contrast kinetics

% Signal

FP (First Pass) SS (Steady State)

without Blood-Pool

Blood-Pool
Blood pool contrast agents

- **Arterial phase**
 - First-pass with 4 to 5-fold higher relaxivity (shorter T1) as compared with extracellular-CA
 - Lower bolus volume
 - Dose 0.03 mmol/kg
 - Injection rate 1 ml/s (first pass imaging)

- **Steady-state phase**
 - High resolution MR angiography (contrast kinetics allow for longer acquisition time)
 - Late phase filling (collateral filling)
 - Intravascular distribution for more than 1 h
 - Can be used as back-up in case of operator error

Nikolaou K et al, Radiology 2006;241:861-872
Applications

- Arterial imaging
 - Classic MRA indications (first pass)
 - Novel indications (steady state)
 - TOS
 - Multiple vascular bed imaging
- (T)EVAR follow-up
 - Endoleak detection
 - Dynamic contrast enhanced studies
- Venous imaging
 - Deep venous thrombosis
 - May-Thurner syndrome
 - Venous mapping
CTV-technique

• 100-150 ml non-ionic contrast (370 mg iodine/ml)
• Flow-rate 2.5 ml/s
• Scan delay 5 minutes

Choi JW et al Int J Cardiovasc Imaging 2015;31:417-426
Chung JW et al JVIR 2004;15:249-256
CTV

Occlusion VCI
CTV

Occlusion VCI
Phlebography

Occlusion VCI
Phlebography

Occlusion VCI
Deep venous thrombosis
CTV

Deep venous thrombosis
Deep venous thrombosis
CTV

Occlusion CFV-tumour
MRV-technique

• Standard Gd contrast medium or bloodpool agents
 – Gadobutrol (double dose 0.2 mmol/kg)
 – Gadofosveset
 (normal dose 0.25 mmol/ml; 10 ml)
• First-pass and steady-state imaging
• Both techniques equally reliable
• NB gadofosveset currently not available in Europe

Arnoldussen CWKP et al Eur Rad 2017;27:4986-4994
<table>
<thead>
<tr>
<th>Table 3</th>
<th>Scan parameters of the sequences used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BTFE Abdomen / pelvis</td>
</tr>
<tr>
<td>Scan mode</td>
<td>M2D</td>
</tr>
<tr>
<td>Repetition time (TR) (ms)</td>
<td>3.8</td>
</tr>
<tr>
<td>Echo time (TE) (ms)</td>
<td>1.92</td>
</tr>
<tr>
<td>Flip angle (degrees)</td>
<td>65</td>
</tr>
<tr>
<td>Acquisition time (TA) (min) (for all stations)</td>
<td>6:40</td>
</tr>
<tr>
<td>Bandwidth (BW) (Hz)</td>
<td>595</td>
</tr>
<tr>
<td>Acquisition voxel (mm)</td>
<td>1.19 × 1.40 × 6.00</td>
</tr>
<tr>
<td>Reconstructed voxel (mm)</td>
<td>1.04 × 1.04 × 6.00</td>
</tr>
<tr>
<td>Number of slices</td>
<td>100</td>
</tr>
<tr>
<td>Acquisition matrix</td>
<td>336 × 228</td>
</tr>
<tr>
<td>FoV</td>
<td>400 × 319</td>
</tr>
<tr>
<td>Fat Supression</td>
<td>No</td>
</tr>
<tr>
<td>Cardiac synchronisation (ECG)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Arnoldussen CWKP et al Eur Rad 2017;27:4986-4994
MRV

Deep venous thrombosis
MRV

Deep venous thrombosis
MRV

May-Thurner syndrome
MRV

May-Thurner syndrome
May-Thurner syndrome
MRV
Pelvic congestion syndrome
Pelvic congestion syndrome
Thoracic outlet syndrome
Thoracic outlet syndrome

Neutral

Abduction

MRV
CTV vs. MRV

- **CTV**
 - Less movement artifacts
 - Higher resolution
 - Better visualization surrounding structures
 - Readily available

- **MRV**
 - Better contrast enhancement
 - BP agents allow long scan window and yield high quality images
 - No-radiation exposure
 - No CIN
CTV vs. MRV
CTV vs. MRV
CTV vs. MRV
Venous imaging

• Importance of pre-interventional imaging to visualize variant anatomy to reduce radiation exposure

Barber B et al, JVIR 2012;23:211-215
Conclusions

• Both CTV and MRV have a role in diagnosis and pre-operative planning of venous disease
• MRV preferable method in most because of lack of radiation exposure (young age group)
• For congenital occlusive disease CTV is probably better
CTV vs. MRV for imaging of venous disease

Jos C. van den Berg, MD PhD
Ospedale Regionale di Lugano, sede Civico, Lugano
University of Bern
Switzerland