BTK Intervention with Drug-Coated Balloons: Past Lessons and Future Exploration

M Sapoval, C Del Giudice, C Dean
Interventional Radiology Dep
Hôpital Européen Georges Pompidou
APHP, Paris, France
• IMPORTANT INFORMATION: These materials are intended to describe common clinical considerations and procedural steps for the on-label use of referenced technologies as well as current standards of care for certain conditions. Of course, patients and their medical circumstances vary, so the clinical considerations and procedural steps described may not be appropriate for every patient or case. As always, decisions surrounding patient care depend on the physician’s professional judgment in light of all available information for the case at hand.

• Boston Scientific Corporation (“BSC”) does not promote or encourage the use of its devices outside their approved labeling.

• The presenter’s experience with BSC products may not be interpreted or relied upon to support clinical claims about BSC devices or product comparison claims regarding BSC and competitive devices. The experiences of other users may vary.

• Results from case studies are not necessarily predictive of results in other cases. Results in other cases may vary.
Disclosure

Speaker name:
...M Sapoval ..

I have the following potential conflicts of interest to report:

1. Consulting (Boston Scientific)
2. Employment in industry
3. Stockholder of a healthcare company
4. Owner of a healthcare company
5. Other(s)

I do not have any potential conflict of interest
First Experience With Drug-Eluting Balloons in Infrapopliteal Arteries
A Schmidt et al JACC 2011

• 109 limbs (lesion length 177 mm).
• 3 m angiography at showed a restenosis in 27.4% (19.1% had restenosis of more than 50%, and 8.3% were totally occluded)
• Only in 9.5% of all angiographically followed up arteries was the entire treated segment re-stenosed or re-occluded.
• At 1 year (91 limbs)
 Complete wound healing occurred in 74.2%,
 Limb salvage of 95.6%
IN.PACT DEEP trial

• Increased amputation rate in DEB group
• Early stop of the trial
Drug-Coated Balloons for Revascularization of Infrapopliteal Arteries: A Meta-Analysis of Randomized Trials
S. Cassese, et al JACC 2016

• A total of 641 patients in 5 trials received DCBs (or control therapy)
• Median follow-up : 12 months.
• Patients treated with DCBs had:
 – Similar risk for target lesion revascularization
 – Similar risk for amputation
 – Similar risk for death
 – Similar risk for major adverse events
• Lesions treated with DCBs showed lower late lumen loss (weighted mean difference 0.41; 95% CI: 0.79 to 0.03; p = 0.04) compared with those treated with control therapy.
Reduction of Late Lumen Loss?

FIGURE 6 Risk Estimates of Late Lumen Loss for Drug-Coated Balloon Versus Control Therapy

Plots of weighted mean difference for late lumen loss associated with drug-coated balloon (DCB) versus control therapy. The **diamond** indicates the point estimate, and the **left and right ends of the line** indicate the 95% confidence interval (CI). Trial acronyms are defined in **Table 1**.
FIGURE 1 Risk Estimates of Target Lesion Revascularization for Drug-Coated Balloon Versus Control Therapy

Plots of risk ratio for target lesion revascularization associated with drug-coated balloon (DCB) versus control therapy. The diamond indicates the point estimate, and the left and right ends of the line indicate the 95% confidence interval (CI). Trial acronyms are defined in Table 1.
Favorable Angiographic Outcome
After Treatment of Infrapopliteal Lesions With Drug-Coated Balloons Without Clinical Benefit
What We Learn From a Meta-Analysis*
Thomas Zeller, MD, Michael R. Jaff, JACC 2016

- **Only the 3 uncontrolled** studies using the IN.PACT Amphirion DCB resulted in superior LLL outcomes (13–15)

- Both independently core laboratory adjudicated and fully industry funded studies **found identical LLL** outcomes for the DCB and PTA cohorts
Favorable Angiographic Outcome After Treatment of Infrapopliteal Lesions With Drug-Coated Balloons Without Clinical Benefit

What We Learn From a Meta-Analysis*
Thomas Zeller, MD, Michael R. Jaff, JACC 2016

• In summary, despite the superior angiographic outcome defined as LLL in this meta-analysis the performance of DCB in infra-popliteal lesions remains controversial.

• In particular the independently controlled studies did not result in any proof of efficacy of short-term balloon-based paclitaxel release to the wall of infra-popliteal arteries.
DEB are still a controversy at this level

• Need for new approaches ...
Restenotic Cascade

Balloon inflation or stent deployment in atherosclerotic vessel
- Crush plaque
- Stretch artery
- De-endothelialization

Platelets and fibrin deposited at injured site
- Signaling cascades
- Inflammatory response

Neointimal Proliferation
- Smooth muscle cell (SMC) migration
- Cellular division

Restenosis
- Extracellular matrix production
- Re-endothelialization

Antiproliferative Agents
- Reduce inflammation
- Arrest mitosis
- Inhibit SMC migration

Immediate
- Days
- Weeks
- Months
Architecture of DCB

<table>
<thead>
<tr>
<th>Drug-coated Balloon Coating Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer matrix coating: drug molecules diffuse through a matrix</td>
</tr>
<tr>
<td>Porous coating: drug molecules diffuse through pores</td>
</tr>
<tr>
<td>Resorbable polymer matrix coating: drug molecules are encapsulated in the polymer and are released with resorption</td>
</tr>
<tr>
<td>Surface deposition: imprinting of the drug on the balloon surface</td>
</tr>
</tbody>
</table>

Drug-balloon surface bonding: strong enough to maintain drug integrity during transit while allowing efficient drug transfer:

- Minimal drug loss during transit
- Rapid and efficient drug transfer (<60 seconds)

Granada J. TCT 2009.
Determinants of DCB Biological Effect

- Antiproliferative agent (Paclitaxel)
- Initial dose/dose density
- Tissue transfer efficiency
 - Coating characteristics (e.g., hydrophobicity/hydrophilicity, crystallinity/amorphous morphology)1-4
 - Excipient5
 - Coating technique6
- Loss to circulation (Insertion-Transit-Inflation)1 and risk of:
 - Particulate embolization
 - Systemic effects
- Paclitaxel tissue residency
 - Presence in tissue during restenotic cascade7 (duration of retention)
 - Homogeneity of distribution

Coating Integrity: Adherence During Hydration

TransPax™ Coating

TransPax coating remained adhered to the balloon during hydration

T = 0 min 3 min 10 min

IN.PACT™ Coating

IN.PACT coating started to crack and flake off after a few minutes of hydration

DCBs were submerged in phosphate buffered saline at 37°C and the coating was imaged at 300X.

Next Generation DCB: Boston Scientific Ranger™

- Sterling balloon platform
- TransPax™ coating technology
 - Paclitaxel 2 µg/mm²
- Ranger™ DCB Loading Tool
 - Designed to protect the drug coating
- Size matrix:
 - SFA: 4-8 mm; 30-200 mm
 - BTK: 2-4 mm; up to 150 mm

CAUTION: The law restricts these devices to sale by or on the order of a physician. Rx Only.
The Ranger BTK study

- Open label prospective trial Investigator sponsored study (Boston Scientific)
- Independent Sponsoring Assistance Publique Hôpitaux de Paris (APHP)
- Angiographic and clinical results of the Ranger balloon BTK to treat patients with critical limb ischemia
- 30 consecutive patients in a single Center (Pompidou H, Paris)
- Last 6 months angiographic follow up March 2018
- Results Q 3 2018

This investigator-sponsored study is supported by grant funding from Boston Scientific. Boston Scientific is not responsible for the collection, analysis or reporting of the study which remains the sole responsibility of the investigators. Information for the use in countries with applicable product registrations.
Next Generation DCB: Boston Scientific Ranger™

- Sterling balloon platform
- TransPax™ coating technology
 - Paclitaxel 2 µg/mm²
- Ranger™ DCB Loading Tool
 - Designed to protect the drug coating
- Size matrix:
 - SFA: 4-8 mm; 30-200 mm
 - BTK: 2-4 mm; up to 150 mm

CAUTION: The law restricts these devices to sale by or on the order of a physician. Rx Only.
Inclusion and Exclusion criteria

- Patient has documented chronic CLI in the target limb prior to the study procedure with Rutherford Category 4, 5 or 6

- Single or multiple lesions with ≥70% diameter stenosis (DS) or total occlusion in at least one BTK vessel

- Reference vessel reference diameter comprised between 2 and 4 mm

- Intraluminal recanalization of the target vessel with successful crossing of the target lesion and placement of the guidewire into the distal true lumen
Primary Endpoint 6 months

- **Efficacy**: Primary patency (no stenosis >50%) of the Target Lesion measured by Quantitative Vascular Angiography (QVA) at 6 months

- **Safety**: Composite of all death and major amputation at 6 months
Secondary Endpoints (6 and 12 Months)

- Late Lumen Loss (LLL)
- Quantitative Vascular Angiography (QVA) at 6 months (Core Lab)
- Clinically driven TLR
- Amputation Free Survival
- Rate of Wound Healing
- Ulcer diameter in the target limb
As of January 2018

- 30 consecutive patients included (inclusion completed)
- Male/female 24/6
- Mean Age 68.8 Years
- Diabetes No (n=11), Type 2 (n=18) Type 1 (n=1)
- Rutherford Rutherford 6 (n=1) Rutherford 4 (n=1) Rutherford 5 (n=28)
- Leg ulcer 29/30

This investigator-sponsored study is supported by grant funding from Boston Scientific. Boston Scientific is not responsible for the collection, analysis or reporting of the study which remains the sole responsibility of the investigators. Information for the use in countries with applicable product registrations.
Lesion type

- Anterior tibial artery (n=14)
- Posterior tibial artery (n=7)
- Peroneal artery (n=2)
- Combined (n=7)
Conclusion

• Need for more evidence in DES for BTK lesions
• The Ranger BTK will be a first step toward more evidence and design of a prospective randomized controlled trial with the Ranger BTK balloon
• Results expected Q3-Q4 2018
BTK Intervention with Drug-Coated Balloons: Past Lessons and Future Exploration

M Sapoval, C Del Giudice, C Dean
Interventional Radiology Dep
Hôpital Européen Georges Pompidou
APHP, Paris, France