Mechanical thrombectomy in peripheral interventions: A multitask and effective tool in a widening scenario. Current evidence and technical tips.

Dr. Bruno Freitas, Prof., MD

Department of Interventional Angiology, Universität Leipzig, Germany
Santa Casa de Maceió, Alagoas, Brazil
Division of Vascular Surgery, Federal University of Alagoas, Brazil
Biotechnological and Biomedical Center- Biocity, Universität Leipzig, Germany
Faculty of Medicine, State University of Alagoas, UNCISAL, Brazil
Interventional Treatment-Options

- Aspiration
- Selective thrombolysis
- Thrombectomy
- Therapy of underlying pathologies
Aspiration of Arterial Emboli

After Aspiration
Aspiration in Arterial Occlusions

Occlusion of the right SFA after Angioseal
Arterial Occlusion after Angioseal

Thrombus-aspiration of an acute SFA-occlusion
Interventional Options in acute Arterial Occlusions

- Aspiration
- **Selective thrombolysis**
- Thrombectomy
- Therapy of underlying pathologies
Indication for local Thrombolysis

- Acute and subacute (up to 1 mo. (-6 mo.)) occlusions
- Native arteries and bypasses

- Success dependent on
 - Age of occlusion / thrombus
 - Can fail in cardiac (older) emboli
Local Lysis in acute Occlusions

Thrombo-embolic left popliteal occlusion

Intermediate result
Local Lysis in Acute Occlusions

after 16 hours of local lysis + balloon-angioplasty
Local bleeding after 12h low-dose thrombolysis
Interventional Options in Acute Peripheral Occlusions

- Aspiration
- Selective Thrombolysis
- Thrombectomy
- Therapy of PAOD

- Rotarex
- X-Sizer
- AngioJet
- Hydrolyser
- ClotBuster
- Acolysis
- Laser
Rotarex mechanical debulking: The Leipzig experience in 1,200+ patients

- Single center registry:
 - Use of Thrombectomy device in OPAD patients
 - Safety and efficacy

- Consecutive patient enrollment
 - Real world scenario
 - 1,809 patients treated (from 1/2005 – 11/2013)
 - 1,572 patients were analyzable (86.9%)
Rotarex mechanical debulking in acute/subacute thrombotic lesions: The Leipzig experience in 525 patients

Intervention Feature

- Native „virgin“ arteries
- Surgical bypasses
- Redo procedures
- In-stent procedures

525 Acute/Subacute
Rotarex mechanical debulking in acute/subacute thrombotic lesions: Onset of symptoms

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute (<14 days)</td>
<td>211</td>
<td>40.2%</td>
</tr>
<tr>
<td>Subacute (<3 months)</td>
<td>314</td>
<td>59.8%</td>
</tr>
</tbody>
</table>

Rotarex mechanical debulking in acute/subacute thrombotic lesions: Clinical status – Rutherford class on admission

<table>
<thead>
<tr>
<th>Rutherford Score</th>
<th>Patient with events, n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>42 (8.0)</td>
</tr>
<tr>
<td>3</td>
<td>159 (30.3)</td>
</tr>
<tr>
<td>4</td>
<td>249 (47.6)</td>
</tr>
<tr>
<td>5</td>
<td>57 (10.9)</td>
</tr>
<tr>
<td>6</td>
<td>18 (3.4)</td>
</tr>
<tr>
<td>Total</td>
<td>525 (100)</td>
</tr>
</tbody>
</table>

Table 2. Baseline Rutherford scores among patients at enrollment Debulking Devices on acute/subacute thrombotic lesions
Rotarex mechanical debulking in acute/subacute thrombotic lesions: Angiographic and procedural characteristics

<table>
<thead>
<tr>
<th>Total Vascular access sites</th>
<th>525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antegrade</td>
<td>150 (28.6%)</td>
</tr>
<tr>
<td>Crossover</td>
<td>337 (64.2%)</td>
</tr>
<tr>
<td>Retrograde</td>
<td>38 (7.2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheath diameter device (French)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>334 (59.2)</td>
</tr>
<tr>
<td>8</td>
<td>230 (40.8)</td>
</tr>
</tbody>
</table>

| Mean lesion length (cm) | 15.9 (2-27.8) |

<table>
<thead>
<tr>
<th>Intervention area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>30 (5.1%)</td>
</tr>
<tr>
<td>SFA</td>
<td>346 (58.3%)</td>
</tr>
<tr>
<td>Popliteal</td>
<td>128 (21.6%)</td>
</tr>
<tr>
<td>SFA + Popliteal</td>
<td>89 (15.0%)</td>
</tr>
</tbody>
</table>

Table 3. Overall Angiographic and procedural characteristics among 525 patients treated with Mechanical debulking devices for acute/subacute thrombotic arterial lesions.
Type of lesion (complain symptoms) (n=593 lesions/525 patients) vs. n (%)

<table>
<thead>
<tr>
<th>Calcification</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No/mild</td>
<td>392 (76.7)</td>
</tr>
<tr>
<td>Moderate</td>
<td>63 (12.3)</td>
</tr>
<tr>
<td>Severe</td>
<td>56 (11.0)</td>
</tr>
</tbody>
</table>

Intervention Feature

| De-novo lesions | 466/593 (78.6) |
| Previous Balloon Angioplasty | 127/593 (21.4) |

* Loss of 82 lesions analysis, due to inadequate images

Rotarex mechanical debulking in acute/subacute thrombotic lesions: Early results

- Procedural success rate: 513 (97.7%)

- Main performed procedure
 - Rotational Thrombectomy alone: 143 (27.2%)
 - Rotational Thrombectomy + PTA: 206 (39.2%)
 - Additional Stenting: 150 (28.6%)
 - Additional Thrombolysis: 73 (13.9%)

- Mean time follow-up: 12 ± 2.4 months
Rotarex mechanical debulking in acute/subacute thrombotic lesions: Early results

- Stenting-rate: 28.6%
- Full lesion stenting: 6.9%
- Focal stenting: 21.7%

Rotarex mechanical debulking in acute/subacute thrombotic lesions

Clinical Follow-up: 12 months results

74.1% of claudicants with improvement of Rutherford class

Case 1: Subacute SFA In-Stent Occlusion

Subacute in-stent occlusion right SFA
Case 1: Subacute SFA In-Stent Occlusion

Result after Rotarex-thrombectomy
Case 1: Subacute SFA In-Stent Occlusion

Result after additional balloon angioplasty
Case 1: Subacute SFA In-Stent Occlusion
Case 2: Subacute SFA In-Stent Occlusion
Rotarex mechanical debulking:
The Leipzig experience in 1,200+ patients

Intervention Feature

- In-stent procedures
- Native "virgin" arteries
- Surgical bypasses
- Redo procedures

338 Procedures
<table>
<thead>
<tr>
<th>Duration</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute (<14 days)</td>
<td>73 (21.6)</td>
</tr>
<tr>
<td>Subacute (< 3 months)</td>
<td>114 (33.8)</td>
</tr>
<tr>
<td>Chronic (> 3 months)</td>
<td>151 (44.6)</td>
</tr>
</tbody>
</table>

Rotarex mechanical debulking in In-stent procedures: Onset of symptoms (n=338)
Table 2. Baseline Rutherford scores among patients at enrollment Debulking Devices for in-stent procedures (n=338)

<table>
<thead>
<tr>
<th>Rutherford Score</th>
<th>Patient with events, n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2 (0.6)</td>
</tr>
<tr>
<td>2</td>
<td>58 (17.2)</td>
</tr>
<tr>
<td>3</td>
<td>212 (62.7)</td>
</tr>
<tr>
<td>4</td>
<td>28 (8.3)</td>
</tr>
<tr>
<td>5</td>
<td>38 (11.2)</td>
</tr>
<tr>
<td>6</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Total</td>
<td>338 (100)</td>
</tr>
</tbody>
</table>
Rotarex mechanical debulking in In-stent procedures: Angiographic and procedural characteristics

<table>
<thead>
<tr>
<th>Total Vascular access sites</th>
<th>338</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antegradeg</td>
<td>118 (34.9%)</td>
</tr>
<tr>
<td>Crossover</td>
<td>176 (52.1 %)</td>
</tr>
<tr>
<td>Retrograde</td>
<td>44 (13%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sheath diameter device (French)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

| Mean lesion length (cm) | 16.3 (4.7-24.8) |

<table>
<thead>
<tr>
<th>Intervention area</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
</tr>
<tr>
<td>SFA</td>
</tr>
<tr>
<td>Popliteal</td>
</tr>
<tr>
<td>SFA + Popliteal</td>
</tr>
<tr>
<td>Proximal BTK</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

Table 3. Overall Angiographic and procedural characteristics among 338 patients treated with Mechanical debulking devices for in-stent procedures.
Rotarex mechanical debulking in In-stent procedures:
Early results

• Procedural success rate: 326 (96.4%)

• Main performed procedure
 • Rotational Thrombectomy alone: 68 (20.9%)
 • Rotational Thrombectomy + PTA: 195 (59.6%)
 • Additional Stenting(re-stenting): 41 (12.6%)
 • Additional Thrombolysis: 45 (13.9%)
 • Associated BTK treatment: 75 (23.1%)

• Mean time follow-up: 12 ± 2.4 months
Rotarex mechanical debulking in **In-stent procedures**: Clinical Follow-up: 30-day results

<table>
<thead>
<tr>
<th>Major Adverse Events (MAE) to 30 postoperative day</th>
<th>Events</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>MI *</td>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>TLR **</td>
<td>9</td>
<td>2.7</td>
</tr>
<tr>
<td>TVR ***</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>Major Amputation</td>
<td>7</td>
<td>2.1</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>6.7</td>
</tr>
</tbody>
</table>

Table 4. Major Adverse Events (MAE) to 30 postoperative day. Values are rate numbers (%) of observations

- *Myocardial infarction
- **Target-lesion revascularization
- ***Target-vessel revascularization
Rotarex mechanical debulking in In-stent procedures: Clinical Follow-up: 12 months results

69.7% of claudicants with improvement of Rutherford class

Follow up

Number of patients

Rutherford classes (RF)

Baseline
Follow up
Case 3: Rotarex-Thrombectomy of left Femoral Bifurcation
Case 4: Rotarex-Thrombectomy
Pelvic Occlusion

Acute left pelvic occlusion
Crossover Rotarex-thrombectomy
Case 4: Rotarex-Thrombectomy
Pelvic Occlusion

After Rotarex

Kissing-Stents

Result
Case 5: Subacute Iliac In-Stent Occlusion
Case 6: Occlusion of a Prosthetic Bypass

- Bypass right iliac to SFA
- „Jump“-graft to pop. Artery
- Femoral bypass-occlusion for 6 months
- Severe claudication
Case 6: Occlusion of a Prosthetic Bypass
Rotarex in AMI

- 2011 – 2015:
- 31 Patients with Acute SMA Occlusion
 (Main Occluded Arterial Trunk)

Etiology:
- Atrial Fibrillation/arrhythmia 26
- Acute Myocardial Infarction 4
- Aortic Thrombus Embolie 1
CASE 7: Acute SMA Thrombosis

Left Brachial Access
6 F (90 cm)

Guiding-Catheter
110 cm MP or JR
CASE 7: Acute SMA Thrombosis

V 0.018“ Guidewire Passage

Support-catheter:
Microcatheter, z.B.
Quickcross (Spectranetics)
CASE 7: Rotarex in Acute SMA Occlusions
CASE 7: Rotarex in Acute SMA Occlusions
Rotarex in SMA Occlusions

Acute Results

- Technical Success 100%
 (Visible SMA Distal Arcade Flow)
- Mean average Duration 27.4 min
- Hospitalar Mortality (16/31) 51.6%
 - 2 deaths due to short gut syndrome

- Overall mortality due to AMI 61%
Acute Mesenteric Ischemia
Prognostic Factors

TIME!

LATE DIAGNOSIS
PATIENTS WITH HIGHER PROBABILITY

Autopsies: 213 AMI Subjects
in 2/3 of patients, diagnosis was not established before
Surgery/Death.

Real-World Registry DEB for Extensive Femoropopliteal Lesions

-- Single center registry of femoropopliteal lesions
-- All--comers, Rutherford class 2 -- 6
-- 288 limbs treated

-- In.Pact PTX--Balloon (mainly In.Pact Pacific) (Medtronic)

-- Follow--up:
-- Clinical, ABI
-- Duplex at 3 months and every 6 months thereafter
-- (PSV \geq 2.5 m/sec)
-- Data--collection ongoing
Real-World-Registry DEB for Femoropopliteal Lesions

Atherectomy before DEB

-- Limbs treated: 83
-- Laser: 10
-- Silver/TurboHawk 16
-- Rotarex 57
 -- 6F Rotarex 26
 -- 8F Rotarex 31
Realworld Fempop DEB-Registry
Rotarex + DEB

Fraction of Rotarex cases: (57 / 288) 19.8 %

Combination Rotarex + DEB was to the discretion of the interventionalist

No exclusion-criteria (eg subintimal passage)
Rotarex + DEB for Femoropopliteal Lesions (n=57)

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenosis</td>
<td>17 (29.8%)</td>
</tr>
<tr>
<td>Occlusion</td>
<td>40 (70.2%)</td>
</tr>
<tr>
<td>Lesion-length</td>
<td>238 ± 98 mm</td>
</tr>
<tr>
<td>De-novo / restenosis</td>
<td>35 (61.4%)</td>
</tr>
<tr>
<td>ISR</td>
<td>22 (38.6%)</td>
</tr>
</tbody>
</table>
Rotarex + DEB for Fem-pop Lesions: Safe and Effective?

- Thrombolysis: 3 (5.3 %)
- Perforation: 3 (5.3 %)
- Viabahn: 1

- Stents implanted: 16 / 57 (28 %)
- Full-lesion: 1
- Focal: 15
Rotarex + DEB Registry

Freedom from restenosis

Mean lesion length: 238 ± 98 mm

De-novo/Restenosis: 61.4 %

In-Stent Reocclusion: 38.6 %
Conclusion

-- The removal of arterial thrombus and embolic material is fast and effective with the Rotarex catheter.

-- The extension of use in the Native arteries, Venous Synthetic Bypasses, as well as for ISR lesions is feasible and safe

-- Especially, the combination of Rotarex with drug eluting technology is promising and deserves further investigation.
Rotarex mechanical debulking

- The use of the Rotarex-catheter in In-stent procedures proved to feasible and safe
- If suspicious of thrombus within the In-stent lesion, pretreatment with Rotarex before adjunctive therapy (DEB, for example) appears to be a reasonable approach
Mechanical thrombectomy in peripheral interventions: A multitask and effective tool in a widening scenario. Current evidence and technical tips.

Dr. Bruno Freitas, Prof., MD

Department of Interventional Angiology, Universität Leipzig, Germany
Santa Casa de Maceió, Alagoas, Brazil
Division of Vascular Surgery, Federal University of Alagoas, Brazil
Biotechnological and Biomedical Center- Biocity, Universität Leipzig, Germany
Faculty of Medicine, State University of Alagoas, UNCISAL, Brazil