12-month Outcomes of Post Dilatation in the IN.PACT Global CTO Cohort Gunnar Tepe, MD RodMed Clinic Rosenheim Rosenheim, Germany #### Disclosure Speaker name: **Gunnar Tepe** I have the following potential conflicts of interest to report: Study support and Advisory Board Medtronic #### Background - Currently no standard identified for the treatment of complex femoropopliteal lesions including CTOs - Challenging to treat CTOs due to long lesion length, calcification and correlation with future limb loss^[1-4] - Existing CTO data focuses on access & lesion crossing and not correlation of procedural characteristics to follow-up outcomes ^{1.} Staniloae CS, et al. J Invasive Cardiol. 2011 Sep;23(9):359-62 ^{2.} Liang, GZ, et al. International Journal of Cardiology. 2013 May;165(3):423-429 ^{3.} Bishop PD, et al. Ann Vasc Surg. 2008;22:799-805. ^{4.} Füessl HS, et al. Klinische Wochenschrift. 1985;63:211-216. #### **IN.PACT Global Study** Real-world, prospective, multicenter, single arm independently-adjudicated femoropopliteal study* - 1535 patients enrolled - 64 sites in EU, Mid-East, Latin America, Asia - Independent adjudication by Clinical Events Committee¹ - Prospective subset analysis with core lab^{2,3} reported results (de novo ISR, long lesions ≥15 cm, CTOs ≥5 cm) - Safety and effectiveness data on 150 mm DCB #### **All-comers** - ✓ Bilateral disease - ✓ Multiple lesions - ✓ SFA and Popliteal Artery - ✓ TASC A, B, C, D - ✓ RCC 2-4 - ✓ De novo ISR - ✓ Long Lesions - ✓ CTOs ^{1.} Syntactx Clinical Events Committee, New York, NY, US ^{2.} VasCore DUS Core Lab, Boston, MA, US ^{3.} SynvaCor Angiographic Core Lab, Springfield, IL, US ^{*} Sponsored by Medtronic plc ## IN.PACT Global Study Architecture This presentation includes outcome data on the 126 subjects with pure CTO lesions enrolled in the CTO Imaging Cohort ^{*} IN.PACT Global Clinical Cohort analysis based on the 1406 ITT subjects # IN.PACT Global Study Primary Endpoints - ➤ <u>Primary Efficacy Endpoint:</u> Freedom from clinically-driven Target Lesion Revascularization¹ within 12 months - ➤ Primary Safety Endpoint: Freedom from device- and procedure-related death through 30 days, and freedom from target limb major amputation and clinically-driven Target Vessel Revascularization within 12 months ### IN.PACT Global Study: CTO Imaging Cohort Baseline Characteristics | Characteristics | Characteristics N = 126 Subjects | | | | |--|----------------------------------|--|--|--| | Age (Y, Mean ± SD) | 67.5 ± 10.4 | | | | | Male % (n) | 69.0% (87/126) | | | | | Diabetes % (n) | 29.6% (37/125) | | | | | Hypertension % (n) | 82.3% (102/124) | | | | | Hyperlipidemia % (n) | 64.5% (78/121) | | | | | Current Smoker % (n) | 49.2% (62/126) | | | | | Obesity % (n) | 20.2% (25/124) | | | | | Coronary Heart Disease % (n) | 24.1% (28/116) | | | | | Carotid Artery Disease % (n) | 19.2% (19/99) | | | | | Renal Insufficiency ¹ % (n) | 10.0% (11/110) | | | | | Previous Peripheral Revasc. % (n) | 33.3% (42/126) | | | | | Concomitant BTK Disease % (n) | 41.0% (48/117) | | | | | ABI ² (Mean ± SD) | 0.593 ± 0.180 | | | | Baseline serum creatinine ≥ 1.5 mg/dl ^{2.} ABI for all target limbs treated during the 1st index procedure are included (can be bilateral) ### IN.PACT Global Study: CTO Imaging Cohort Lesion and Procedural Characteristics | Lesion Characteristics | N = 126 Subjects
N = 127 Lesions | | | |---|--|--|--| | Lesion Type: % (n) De novo Restenotic (non-stented) In-stent Restenosis | 92.1% (117/127)
7.9% (10/127)
0.0% (0/128) | | | | Lesion Length (cm ± SD) | 22.83± 9.76 | | | | Occluded Lesion Length (cm ± SD) | 11.86 ± 8.05 | | | | Calcification % (n) | 71.0% (88/124) | | | | RVD (mm ± SD) | 5.049 ± 0.655 | | | | Diameter Stenosis (% ± SD) | 100.0 ± 0.0 | | | | <u>Dissections</u> :
0
A-C
D-F | 32.3% (41/127)
44.1% (56/127)
23.6% (30/127) | | | | Procedural Characteristics | N = 126 Subjects
N = 127 Lesions | | |--|-------------------------------------|--| | Device Success ¹ % (n) | 99.3% (283/285) | | | Procedure Success ² % (n) | 100% (125/125) | | | Clinical Success ³ % (n) | 99.2% (124/125) | | | Pre-dilatation % (n)
Post-dilatation ⁴ % (n) | 94.4% (119/126)
50.0% (63/126) | | | Provisional Stent % (n) | 46.8% (59/126) | | - Device success defined as successful delivery, inflation, deflation and retrieval of the intact study balloon device without burst below the RBP. - Procedure success defined as residual stenosis of ≤ 50% (nonstented subjects) or ≤ 30% (stented subjects) by core lab (if core lab was not available then the site-reported estimate was used). - 3. Clinical success defined as procedural success without procedural complications (death, major target limb amputation, thrombosis of the target lesion, or TVR) prior to discharge. - 4. Post-dilatation is not required and is performed at the discretion of the investigator. In the event a post-dilatation is performed, it must be done with a balloon shorter than the lesion length to avoid geographic miss when initial DCB dilatation results in any of the following: Residual stenosis ≥ 50% (by visual estimate); Trans-lesional gradient is >10 mm Hg; Presence of a flow-limiting dissection. #### Results Across IN.PACT Clinical Studies at 1 year Consistent clinical outcomes with the IN.PACT™ Admiral™ DCB across studies and complex femoropopliteal lesions. | | IN.PACT SFA
(DCB Arm)
(N= 220) | IN.PACT GLOBAL Long Lesion Imaging Cohort (N= 157) | IN.PACT GLOBAL ISR Imaging Cohort (N= 131) | IN.PACT GLOBAL CTO Imaging Cohort (N= 126) | |---|--------------------------------------|--|--|--| | Lesion Length
(Mean ± SD, cm) | 8.94 ± 4.89 | 26.40 ± 8.61 | 17.17 ± 10.47 | 22.83 \pm 9.76 (occluded length of 11.86 \pm 8.05) | | Primary Patency ¹ | 87.5% | 91.1% | 88.7% | 85.3% | | CD-TLR | 2.4% | 6.0% | 7.3% | 11.3% | | Primary Safety
Endpoint ² | 95.7% | 94.0% | 91.1% | 88.7% | | Major Target
Limb Amputation | 0.0% | 0.0% | 0.0% | 0.0% | ^{1.} Kaplan-Meier survival estimate at 12 months ^{2.} Composite of 30-day freedom from device- and procedure-related mortality and 12-month freedom from major target limb amputation and clinically-driven TVR. # IN.PACT Global Study: CTO Imaging Cohort (subgroup analysis with and without post dilation) 57 Number at risk represents the number of evaluable subjects at the beginning of the each 30-day window 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Primary Patency Number at risk WITH WITHOUT 45 45 # IN.PACT Global Study: CTO Imaging Cohort (subgroup analysis with and without post dilation) #### Summary In this sub analysis of post dilation in the IN.PACT Global CTO imaging cohort, there was a significant difference between with and without post dilation groups. ``` 12 month primary patency 88.8% with post dilation 81.6% without post dilation (P=0.0283) ``` 12 month Freedom from CD-TLR 94.8% with post dilation 83.3% without post dilation (P=0.0394) These finding elucidate the need for further research in procedural differences during drug-coated balloon angioplasty techniques. # 12-month Outcomes of Post Dilatation in the IN.PACT Global CTO Cohort Gunnar Tepe, MD RodMed Clinic Rosenheim Rosenheim, Germany