Interventional Techniques for Central Vein Stenosis in the Chest

Robert Lookstein MD MHCDL FSIR FAHA FSVM
Professor of Radiology and Surgery
Vice Chair and System Chief, Interventional Services
Department of Radiology
Medical Director, Supply Chain
Mount Sinai Health System
Disclosures:

In the past 12 months, my spouse or myself have engaged in financial relationships as follows:

- **Consultant:**
 - Boston Scientific, Medtronic, CSI

- **Speakers Bureau:**
 - Medtronic, Abbott, Endologix

- **Research Support**
 - Philips Healthcare, Venite, Bard, BTG, Boston Scientific, Penumbra, Angiodynamics, Medtronic

- **Clinical Events Committee**
 - Shockwave (Disrupt PAD), Intact Vascular (TOBA-2)
Complex Central Vein Reconstruction
The procedure/setup up

• Supine
• Both upper extremities abducted 90 degrees
• +/- groin access
The tool box

- **Access:** Micropuncture kit, 25-40+ cm 7Fr or 8 Fr vascular sheaths

- **Procedural Guidewires:** Hydrophilic wires and 260cm stiff wires

- **Catheters:** Angled (Kumpe, Vertebral or Bernstein), measuring catheters, guide catheters, long sheaths, 6 Fr Goose Neck snare, Re-entry or recanalization catheters

- **Thrombolysis / Thrombectomy devices** (determine amount of fresh clot to decide thrombectomy / lysis vs. rapid stenting)

- **Sharp recanalization:** 65cm 21 gauge Chiba needle (DCHN-21-65.5-U), 9 or 10 Fr Rösch-Uchida introducer sheath, Nitrex .018 guidewire, Gooseneck snare, (coaxial system) microcatheter in a 4fr Glide catheter or slip catheter.

- **Balloons:** 8-14mm diameter 2 or 4cm length

- **Stents:** 8-14mm diameter (Nitinol self expanding and/or covered)
SVC syndrome secondary to HD catheters
Sharp recanalization of chronically occluded Right Brachiocephalic Vein
TECHNICAL NOTE

Sharp Central Venous Recanalization in Hemodialysis Patients: A Single-Institution Experience

Mohammad Arabi¹ · Ishtiaq Ahmed¹ · Abdulaziz Mat’hami¹ · Dildar Ahmed² · Naveed Aslam²

100% technical success
28% major complications

CLINICAL INVESTIGATION

Success Rate and Complications of Sharp Recanalization for Treatment of Central Venous Occlusions

Emil I. Cohen¹ · Christopher Beck¹ · Jesse Garcia² · Ryan Muller² · Hyun J. Bang² · Keith M. Horton² · Farris Hakki²

95% technical success
5% major complications
Sharp Recanalization - Outback
Sharp recanalization - Advanced
After wire was externalized a microcatheter was advanced from the groin and then the wire was pulled into the left subclavian vein.
Sharp recanalization

- Good pre-op imaging paramount to know what you are going to possibly hit/cross
- Use a target on the other end
- Don’t use big needles
- Maybe helpful to use covered stents
Caudal-cranial direction:
(+): Lower risk of cardiac tamponade
(-): Unstable: heart beats

Cranio-caudal direction:
(+): Stable access
(+): Larger target area
(-): > risk of cardiac tamponade
Radiofrequency wire technology

- **Generator:**
 RF energy = vaporizes channel through occlusion but minimal damage to surrounding tissues

- **Grounding Pad**

- **Activated by a pedal or pushing the yellow button**
Central venogram:
- Collaterals
- Length of the occlusion
- Diameter of the venous stumps
In summary

- With compulsive pre-procedure planning and meticulous technique, most central vein occlusions can be crossed and stented.
- Be careful and avoid sharp needle crossing without navigation/guidance.
- Great deal of potential research regarding ideal stent and post-revasc protocol to maintain vessel patency and improve outcomes.